Главная Логистика
Управление запасами в цепях поставок
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Модель управления запасами «минимум-максимум»Еще одним вариантом доработки основных моделей для условий колебаний потребности в запасе является модель управления запасами «минимум-максимум». В отличие от модели с периодическим пополнением запаса до постоянного уровня (см. подп. 9.2.2) эта модель разработана для условий, когда издержки содержания запаса превышают издержки в результате дефицита. В такой ситуации наличие определенного уровня дефицита оправдано, а содержание большого запаса нежелательно. Поэтому в модели «минимум-максимум» заказы производятся не в каждый заданный момент времени, как в модели с фиксированным интервалом времени между заказами, а только в те заданные моменты, когда запас оказался меньшим или равным установленному минимальному уровню запаса. В случае выдачи заказа его размер определяется экспертно, чтобы поставка пополнила запас до максимального желательного уровня. Таким образом, данная модель работает с двумя уровнями запаса — минимальным и максимальным, чему и обязана своим названием. Как и предыдущая модель с установленной периодичностью пополнения запаса до постоянного уровня, модель «минимум-максимум» содержит в себе элементы основных моделей управления запасами. Как и в модели с фиксированным интервалом времени между заказами, здесь используется постоянный интервал времени между возможными заказами. Из модели с фиксированным размером заказа заимствована идея отслеживания некоторого порогового уровня, который здесь называется минимальным. Исходные данные для расчета параметров модели «минимум- максимум» совпадают с моделью управления запасами с фиксированным интервалом времени между заказами:
Расчетными параметрами модели «минимум-максимум» являются:
Расчет максимального запаса может быть проведен по формулам расчета максимального желательного запаса (см. позицию 10 табл. 9.11). Роль минимального уровня запаса аналогична роли порогового уровня запаса в модели с фиксированным размером заказа (см. табл. 9.12). Отличие состоит в том, что в расчете минимального уровня запаса следует учитывать не только ожидаемое потребление за время выполнения заказа и уровень страхового запаса (как это делается при расчете порогового уровня запаса), но и возможное отклонение потребности от запланированной величины. Порядок расчета всех остальных параметров модели «минимум-максимум» аналогичен расчету параметров модели с установленной периодичностью пополнения запаса до постоянного уровня (см. табл. 9.11). Заказы выдаются в объеме, который определяется либо по известной формуле из модели с фиксированным интервалом времени между заказами (см. формулу (9.9)), либо экспертно — с учетом возможного изменения потребности в запасе в будущие периоды. На рис. 9.12 приведена иллюстрация движения запаса при использовании модели «минимум-максимум». Заранее определены моменты выдачи плановых заказов. Интервал времени между заказами (см. позицию 2 табл. 9.11) устанавливается как исходная величина, которая может быть рассчитана по формуле (9.8). От плановых заказов, возможно, потребуется отказаться, если в заданный момент заказа уровень запаса будет выше порогового уровня. ![]() Рис. 9.12. Иллюстрация движения запаса в модели «Минимум-максимум» Пример 9.4. Расчет параметров модели «минимум-максимум» Для исходных данных, использованных в примерах использования основных моделей (табл. 9.2, 9.7), а также модели с установленной периодичностью пополнения запаса до постоянного уровня (табл. 9.12) рассчитаны показатели модели «минимум-максимум» (табл. 9.14). Максимальное потребление за время выполнения заказа (см. позицию 8 табл. 9.14) рассчитано исходя из предположения, что ожидаемое потребление за время выполнения заказа может быть увеличено на стандартное отклонение спроса по данным прошлого периода, равное 2 единицам. Тогда максимальное потребление за время выполнения заказа будет равно
Пример расчета параметров модели «минимум-максимум»
Страховой запас (см. позицию 9 табл. 9.14) будет равен, учитывая наличие и задержки поставки (см. позицию 4 табл. 9.14) и возможное отклонение спроса на стандартное отклонение в 2 единицы как разницу максимального потребления за время выполнения заказа (см. позицию 8 табл. 9.14) и ожидаемого потребления за время выполнения заказа (см. позицию 4 табл. 9.14) (см. формулу (9.3)),
Минимальный уровень запаса (см. позицию 10 табл. 9.14) определен на основе формулы расчета порогового уровня запаса при учете возможного увеличения потребности на величину стандартного отклонения в 2 единицы (см. позицию 10 табл. 9.1):
Максимальный запас (см. позицию 11 табл. 9.14) определен на основе формулы расчета максимального желательного запаса при учете возможного увеличения потребности на величину стандартного отклонения в 2 единицы (см. позицию 10 табл. 9.11):
Иллюстрация движения запаса по методике «минимум-максимум» приведена в табл. 9.15. Первоначально запас находится на максимальном уровне. Предположим, что заказы выполняются на 10-й день. В первый день заказ не выдается, так как запас находится выше заданного Расчет уровней запаса при колебании потребности в запасе и наличии задержек поставок при основных параметрах табл. 9.12 Таблица 9.15
минимального уровня (см. позицию 8 табл. 9.14). До 10-го дня текущий контроль уровня запаса не проводится. На 10-й день уровень запаса равен минимальному, требуется выдать заказ, который в данном примере определяется по формуле определения размера заказа в модели с фиксированным размером заказа (см. формулу (9.9)):
Сделанный заказ выполняется через четыре дня и учитывается на 14-й день. Вопрос о выдаче следующего заказа рассматривается на 20-й день. Текущий уровень запаса равен 24 единицам, что ниже минимально допустимого уровня; следовательно, заказ должен быть сделан в объеме
Заказ не выдается на 50-й день, так как запас находится на уровне, превышающем минимальный уровень. Иллюстрация движения запаса по данным табл. 9.15 представлена на рис. 9.13. ![]() Рис. 9.13. Иллюстрация движения запаса при колебании потребности в запасе по параметрами табл. 9.15 Как видно из рис. 9.13, обеспечение потребности запасом после корректировки расчетов основных параметров (максимального и минимального уровня запаса, а также страхового запаса) модели «минимум-максимум» дает результат, сравнимый с результатом использования модели с установленной периодичностью пополнения запаса до постоянного уровня (рис. 9.9). В течение длительного периода времени дефицита удается избежать, пользуясь определенными аналитическими расчетами и предположением, что задержек поставок не было. В отличие от результатов производных моделей использование основных моделей управления запасами в условиях колебания потребности приводит к устойчивому дефициту запаса в периоды, близкие к получению поставок (рис. 9.5 и 9.8). |
<< | СОДЕРЖАНИЕ | ПОСМОТРЕТЬ ОРИГИНАЛ | >> |
---|