Полная версия

Главная arrow Медицина arrow Век генетики и век биотехнологии на пути к редактированию генома человека

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

ГМО-растения, устойчивые к насекомым-вредителям

Одним из факторов риска в получении высоких и стабильных урожаев является поражение посевов насекомыми. Так, например, ущерб от поражения посевов кукурузы кукурузным мотыльком (Ostrinia nubialis) в США составляет около миллиарда долларов в год. А тысячи тонн инсектицидов, расходуемых ежегодно, как известно, не очень полезны окружающей среде.

Молекулярные биологи сумели обеспечить организмы иммунитетом к их вредителям [Глазко, 2006]. Исходной точкой для исследователей послужила бактерия Bacillus thuringiensis. Этот микроорганизм давно известен как биологический инсектицид, искусственно выращиваемый и используемый для опыления культурных растений. С листвы растений бактерии попадают в организм вредителей, нарушая пищеварительную функцию гусениц. Причиной тому служит особый белок, вырабатываемый микроорганизмами. В течение 40 часов насекомые погибают. Преимущество подобных пестицидов в том, что они совершенно безвредны для людей и животных.

Но зачем с трудом выращивать бактерии, а затем их распылять? Такой вопрос задали себе бельгийские ученые. Они выделили искомый ген белка-убийцы и, используя в качестве переносчика генов Гг-плазмиды, включили его «строительные элементы» в ДНК нужных растений (например, кукурузы, картошки, табака, томатов и др.). Их листва сама стала «производить» смертельный для вредителей белок.

Повышение устойчивости растений к насекомым методами ДНК-технологий достигается путем встраивания в геном растений генов, под контролем которых осуществляется синтез веществ, токсичных для насекомых и безопасных для людей и животных.

Наиболее распространенным приемом сейчас является введение гена Bt-токсина — естественного инсектицида, вырабатываемого почвенными бактериями Bacillus thuringiensis. Данный белок термонестабилен, т.е. разрушается при термической обработке продукции. Кроме того, он нетоксичен для теплокровных животных. Почвенная грамположительная бактерия Bacillus thuringiensis (Bt) продуцирует в процессе спорообразования кристаллические белковые включения, в состав которых входят белки, называемые Cry-белками. Они обладают селективным действием против узких групп насекомых, причем различные классы белков эффективны для применения против разных насекомых-вредителей. Cry-белки присоединяются к специфическим участкам клеток пищеварительной системы насекомых и образуют ион-селективные каналы в клеточных мембранах. Они распознают особый рецептор в пищеварительной системе контролируемого насекомого. Это приводит к чрезмерному поступлению воды, клетки разбухают, что приводит к лизису и последующей гибели насекомого.

^-защищенные растения экспрессируют один или несколько Сгу-бел- ков для защиты от чешуекрылых и жесткокрылых вредителей.

Природа заранее все продумала. В мире известны тысячи штаммов Bt с разнообразными генами и широким потенциалом биологически активных белков. В целом эти штаммы представляют богатейший источник структурных компонентов многочисленных будущих препаратов для борьбы с самыми разнообразными вредителями.

Успехи генной инженерии неизмеримо расширили спектр биологических объектов, перспективных в качестве доноров генов. Помимо растений, ими могут быть насекомые, грибы, бактерии, вирусы. Отсюда стремление биотехнологических компаний создавать свои частные банки генов. Так, фирма «Бристайл-Майерс» (США) имеет патенты на многие бактериальные культуры, в числе которых образцы из Индии, а также Филиппин, Фиджи, Бразилии, Перу и др. По нормам промышленного патентования фирма приобретает монопольное право на их использование.

В настоящее время компаниями «Monsanto», «AgrEvo», «Mycogen» и «Novartis» созданы другие трансгенные формы, устойчивые к насекомым, так называемые Bt-растения — соя, хлопчатник, кукуруза.

Специалисты и ученые полагают, что применение Bt-растений может иметь не только хорошее коммерческое будущее, но и экологический эффект, хотя имеются и альтернативные точки зрения [Глазко, 2006; Энг- даль, 2009; Cheshko et al., 2015]. Известно, что только 5% внесенного инсектицида срабатывает по назначению, остальные 95% попадают в окружающую среду, уничтожая многие виды насекомых, в том числе и полезных. Сокращение же объемов применения инсектицидов приведет к восстановлению популяций многих полезных насекомых, что, несомненно, положительно скажется на многих видах растительного и животного мира.

В Китае получены трансгенные растения более 100 видов, которые включают основные злаки (рис, пшеница, кукуруза, сорго), а также хлопчатник, сою, рапс, арахис, овощные культуры (кочанная и цветная капуста, перец), плодовые (яблоня, цитрусовые, киви), древесные (тополь, эвкалипт, шелковица). Более 100 генов, включая маркерные, использованы в этих экспериментах. Трансгенный табак, устойчивый к вирусам, выращивали уже в 1994 г. на площади 36 тыс. га. Прошли полевые испытания трансгенные растения хлопчатника с генами Bt или ингибитора протеаз, устойчивые к насекомым, служащие исходным материалом для создания устойчивых к насекомым сортов этой культуры для различных районов Китая. Разработанный для хлопчатника в 1983 г. Жоу {Zhou) методом трансформации по следу пыльцевой трубки с успехом использовался для генетической трансформации риса, пшеницы, сои. Наиболее значительным успехом в Китае считается получение пшеницы, устойчивой к вирусам за счет гена белка оболочки вируса, и устойчивого к насекомым хлопчатника с геном эндотоксина Bt.

Первым трансгенным растением, экспрессирующим гены Bt и прошедшим полевые испытания, стал картофель, полученный фирмой «Монсанто». Однако кукуруза является намного более важной культурой для Америки. Только в США она выращивается на 60-70 млн акров (стоимость урожая примерно 21 млрд долл.). Огромный объем рынка привлек и другие компании. «Пионер», «Монсанто» и «ДеКалб Дженетикс» также имеют трансгенную кукурузу

Протеин Bt активен не только против европейского мотылька кукурузы, но также против юго-западного мотылька и кукурузной моли. Ориентировочные потери от этих основных вредителей кукурузы составляют 800-900 млн долл, ежегодно [Глазко, Чешко, 2007].

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>