Методы оценки риска.

Риски в предпринимательстве принято оценивать вероятной суммой финансовых потерь, выраженной в валюте проекта (рублях, долларах), и степенью риска, выраженной в вероятности неосуществления выполняемого проекта, мероприятия или недостижения намечаемого уровня прибыли, доходов или других целей проекта. В настоящее время на практике используется достаточно широкий спектр приемов и подходов, позволяющих анализировать риски.

В стабильной экономике для оценки факторов риска используются обычно статистически оцениваемые параметры (факторы) и их фиксированные зависимости друг от друга (весовые характеристики факторов). Для нестационарной экономики факторные характеристики риска сами являются объектом выбора и статистической оценки. В этом случае концепция измерения риска не может базироваться на классических вероятностных принципах, использующих возможности неограниченного повторения одних и тех же событий в одних и тех же или сходных условиях. В связи с этим изменяется сам инструментарий измерения (шкалы, показатели, алгоритмы), сужается область применения линейных показателей типа математического ожидания, расширяется область использования субъективных оценок.

Риск — категория вероятностная, поэтому в процессе оценки неопределенности и количественного определения риска можно использовать вероятностные расчеты. Важнейшим показателем, характеризующим меру финансового риска предприятия, является его уровень. Этот показатель оказывает определяющее воздействие на формирование уровня доходности финансовых операций предприятия. Эти два показателя находятся в тесной взаимосвязи и представляют собой единую систему «доходность — риск». Соотношение уровня доходности и риска является одной из основных базовых концепций финансового риск-менеджмента, в соответствии с которой уровень доходности финансовых операций при прочих равных условиях всегда сопровождается повышением уровня их риска и наоборот [28]. Кроме того, уровень финансового риска является главным показателем оценки уровня финансовой безопасности предприятия, характеризующим степень защиты его финансовой деятельности от угроз внешнего и внутреннего характера. Поэтому оценка уровня риска в процессе управления финансовой деятельностью предприятия сопровождает подготовку практически всех управленческих решений.

Уровень финансового риска характеризует вероятность его возникновения под воздействием определенного фактора риска (или группы таких факторов) и возможных финансовых потерь при наступлении рискового события. С учетом этого определения формируется конкретный методический инструментарий оценки уровня риска, позволяющий решать связанные с ним конкретные задачи управления финансовой деятельностью предприятия. Рассмотрим основные расчетные показатели такой оценки.

Уровень финансового риска — характеризует общий алгоритм оценки этого уровня, представленный следующей формулой:

где УР — уровень соответствующего финансового риска; ВР — вероятность возникновения данного финансового риска; РП — размер возможных финансовых потерь при реализации данного риска.

В практике использования этого алгоритма размер возможных финансовых потерь выражается обычно абсолютной суммой, а вероятность возникновения финансового риска — одним из коэффициентов измерения этой вероятности (коэффициентом вариации, бета- коэффициентом и др.). Соответственно, уровень финансового риска при его расчете по данному алгоритму будет выражен абсолютным показателем, что существенно снижает базу его сравнения при рассмотрении альтернативных вариантов.

Дисперсия — характеризует степень колеблемости изучаемого показателя (в данном случае — ожидаемого дохода от осуществления финансовой операции) по отношению к его средней величине. Чем колебания больше, тем выше степень риска. Дисперсия рассчитывается по следующей формуле:

где сГ — дисперсия; Ri — конкретное значение возможных вариантов ожидаемого дохода по рассматриваемой финансовой операции;

^ — среднее ожидаемое значение дохода по рассматриваемой финансовой операции; Pi - возможная частота (вероятность) получения отдельных вариантов ожидаемого дохода по финансовой операции; п — число наблюдений.

Дисперсия не дает полной картины уклонений АХ = X - (), более

наглядных для оценивания рисков. Тем не менее, задание дисперсии позволяет установить связь между линейным и квадратичным отклонениями с помощью известного неравенства Чебышева.

Вероятность того, что случайная величина X отклоняется от своего математического ожидания больше, чем на заданный допуск е > 0, не превосходит ее дисперсии, деленной на г2, т.е.

Отсюда видно, что незначительному риску по дисперсионному отклонению соответствует малый риск по линейным отклонениям [3]: точки X с большой вероятностью будут располагаться внутри е — окрестности ожидаемого значения ^ .

Среднеквадратическое (стандартное) отклонение является одним из наиболее распространенных при оценке уровня индивидуального финансового риска и, как дисперсия, определяет степень абсолютной колеблемости и рассчитывается по следующей формуле [3, 27]:

Среднеквадратическое отклонение о является размерной величиной и указывается в тех же единицах, в каких измеряется варьирующий признак. Преимущество среднеквадратического отклонения в том, что при близости наблюдаемого распределения (например, распределения дохода от инвестиций) к нормальному этот параметр может быть использован для определения границ, в которых с заданной вероятностью следует ожидать значение случайной переменной. Так например, с вероятностью 68,3% можно утверждать, что значение случайной переменной х (в рассматриваемом случае — доход) находится в границах (М + о)... (М - а), а с вероятностью 95,4% находится в диапазоне (М + 2а).. .(М - 2а) (рис. 10.2) [27].

Коэффициент вариации CV позволяет определить уровень риска, если показатели среднего ожидаемого дохода от осуществления финансовых операций различаются между собой. Расчет коэффициента вариации осуществляется по следующей формуле:

Коэффициент вариации CV — безразмерная величина. С его помощью можно сравнивать даже колеблемость признаков, выраженных в разных единицах измерения. Коэффициент вариации изменяется от О до 100%. Чем больше коэффициент, тем сильнее колеблемость. Установлена следующая качественная оценка различных значений коэффициента вариации: до 10% — слабая колеблемость, 10-25% — умеренная колеблемость, свыше 25% — высокая колеблемость [27].

Бета-коэффициент (или бета) — позволяет оценить индивидуальный или портфельный систематический финансовый риск по отношению к уровню риска финансового рынка в целом. Этот показатель используется обычно для оценки рисков инвестирования в отдельные ценные бумаги и рассчитывается по формуле

где К — степень корреляции между уровнем доходности по индивидуальному виду ценных бумаг (или по их портфелю) и средним уровнем доходности данной группы фондовых инструментов по рынку в целом; аи — среднеквадратическое отклонение доходности по индивидуальному виду ценных бумаг (или по их портфелю в целом); ор — среднеквадратическое отклонение доходности по фондовому рынку в целом.

Вероятность распределения доходов проекта

Рис. 10.2. Вероятность распределения доходов проекта

Уровень финансового риска отдельных ценных бумаг определяется на основе следующих значений бета-коэффициентов: р = 1 — средний уровень; Р > 1 — высокий уровень; Р < 1 — низкий уровень.

С помощью вероятностного метода оценки можно оценить риск не только конкретной сделки, но и предпринимательской фирмы в целом (проанализировав динамику ее доходов) за некоторый промежуток времени. Выбор конкретных методов оценки определяется наличием необходимой информационной базы и уровнем квалификации управленческого персонала.

Традиционные для практики финансового риск-менеджмента методы оценки меры риска на основе показателя его уровня имеют ряд недостатков. К числу основных из таких недостатков относится прежде всего то, что «уровневые» показатели риска не характеризуют максимально возможную сумму финансового ущерба при наступлении рискового события, соответственно, не позволяют и страховаться от финансового риска предприятия в полном его объеме. Кроме того, отдельные «уровневые» показатели не могут быть агрегированы по портфелю финансовых инструментов, обращающихся на различных видах финансового рынка (например, на валютном и фондовом), а также по различным инструментам даже одного вида финансового рынка (например, опциона и свопа). Наконец, использование «уровне- вых» показателей меры финансового риска в процессе его контроля на предприятии является недостаточно надежным по таким финансовым инструментам, которые чувствительны к различным факторам риска.

В связи с этим в последнее десятилетие получила развитие новая методология оценки меры финансового риска на основе использования показателя «стоимость риска» или «стоимость под риском» (Value-at-risk, VAR). Начало внедрения этой новой методологии оценки меры риска в практику связывается с директивой Европейского совета от 1993 г. (ЕЕС-6-93), предписывающей финансовым институтам (в первую очередь банкам, инвестиционным и страховым компаниям) устанавливать обязательное резервирование капитала для обеспечения рыночных (систематических) финансовых рисков на основе расчета показателя VAR по предложенной им методике. Впоследствии (в 1995 г.) Базельский комитет по надзору за банками [27] разрешил коммерческим банкам применять собственный методический инструментарий расчета показателя VAR. За прошедшее десятилетие оценка меры финансового риска на основе показателя VAR получила развитие в США и Западной Европе не только в среде финансовых институтов, но и в значительном числе компаний, функционирующих в реальном секторе экономики. Кроме того, методический инструментарий оценки VAR начал использоваться западными компаниями для исследования не только рыночного (систематического) риска, но и риска несистематического (в частности, для оценки кредитного риска). В последние годы использование этого показателя получает развитие и в нашей стране.

Рассмотрим основное содержание концепции и методический инструментарий оценки меры финансового риска на основе показателя VAR: «стоимость под риском» представляет собой показатель статистической оценки, выраженный в денежной форме максимально возможного размера финансовых потерь при установленном виде распределения вероятности факторов, влияющих на стоимость активов

(инструментов), а также заданном уровне вероятности возникновения этих потерь на протяжении расчетного периода времени. Из приведенного определения видно, что основу методологии расчета показателя VAR составляют три основных элемента.

Одним из таких элементов является установленный риск- менеджером вид распределения вероятностей рисковых факторов, влияющих на стоимость активов (инструментов) или их совокупного портфеля. Такими видами могут быть нормальное распределение, распределение Лапласа, Стьюдента и др. Поэтому для определения используемого вида распределения вероятностей предварительно должно быть проведено статистическое исследование влияния изменения рискового фактора на изменение стоимости отдельного актива или всего их портфеля. На основе такого статистического исследования должна быть построена функция ценообразования актива (или портфеля) в зависимости от конкретного фактора (вида) финансового риска. Если же показатель VAR определяется по всей совокупности факторов риска (например, при оценке систематического риска в целом), то следует определить форму и тесноту корреляционных связей между различными факторами риска. Корректность устанавливаемого вида распределения вероятностей в модели расчета показателя VAR прямо определяет правильность его значений [28].

Вторым элементом, который используется в статистической модели определения показателя VAR, является задаваемый риск- менеджером уровень вероятности того, что максимально возможный размер финансовых потерь не превысит расчетное значение этого показателя. В терминологии финансового риск-менеджмента такая заданная вероятность характеризуется термином доверительный уровень [confidence level]. Конкретное значение доверительного уровня для модели расчета показателя VAR выбирается риск-менеджером исходя из его рисковых предпочтений. В современной практике финансового риск-менеджмента этот уровень устанавливается обычно в пределах 95-99%.

Наконец, третьим элементом модели определения показателя VAR является устанавливаемый риск-менеджером расчетный период времени его оценки (или конкретный временной горизонт, в рамках которого оцениваются предстоящие возможные финансовые потери). В терминологии финансового риск-менеджмента такой отрезок времени характеризуется термином «период поддержания позиции» [holding period]. В современной практике финансового риск-менеджмента этот период определяют обычно по одному из следующих двух критериев: намечаемого периода владения рассматриваемым активом (т.е. времени его удержания в портфеле предприятия) или уровня его ликвидности (реального срока его конверсии в денежную форму без потери своей текущей рыночной стоимости).

Наглядное представление о формировании показателя VAR с учетом рассмотренных трех элементов его расчетной модели дает график, представленный на рис. 10.3.

Графический метод определения значения показателя «стоимость под риском»

Рис. 10.3. Графический метод определения значения показателя «стоимость под риском»

Как видно из рис. 10.3, кривая доходов иллюстрирует нормальный вид распределения вероятностей прибыли и убытков по рассматриваемому финансовому инструменту в заданном расчетном периоде времени. Поле внутри этого графика между значением -2а и +Зо соответствует избранному доверительному уровню (95% площади под кривой), а поле между -За и -2а характеризует значения возможных убытков, выходящие за рамки доверительного уровня (5%). На графике показатель VAR определен в сумме 3 тыс. руб., что соответствует максимальному размеру возможных финансовых потерь по рассматриваемому финансовому инструменту при заданных доверительном уровне и расчетном периоде оценки, при этом значение VAR отделяет на диаграмме значение доходов, выходящих за пределы доверительного интервала (10%).

Для того чтобы полностью описать риск, используя меру VAR, вначале нужно задать вероятность (достаточно малую, чтобы считать событие «почти» невозможным), или доверительный уровень, связанный с этим значением вероятности [31]. Чаще всего на практике задают вероятность 5%, соответственно, говорят о доверительном уровне 95% (100 - 5%) и обозначают результат в виде VAR95% (произносится «VAR на уровне 95%»). Уровень 95% достаточно условен, каждый индивидуум задает этот уровень, исходя из собственного отношения к возможным маловероятным событиям и понимания того, что считать

«почти» невозможным событием, поэтому могут использоваться и другие уровни доверительной вероятности, например 90 или 99% (тогда говорят о VAR90% или VAR99%). Кроме того, при оценке или вычислении VAR на практике задают временной горизонт игры (финансовой операции). Поэтому говорят о риске как о минимальном результате, который будет получен с определенной доверительной вероятностью в течение установленного промежутка времени.

Приведем пример. Фраза «оценка VAR риска снижения доходности в течение следующей недели составляет -2% на доверительном уровне 95%» или кратко «недельный VAR95% - -2%» означает, что:

  • • с вероятностью 95% доходность планируемой операции составит не менее -2% за неделю;
  • • с вероятностью 95% убыток за неделю не превысит 2%;
  • • за неделю убыток более 2% возможен с вероятностью 5%.

Экономическая суть такой меры риска в следующем. Предположим, оценивается риск некоторой игры и утверждается, что VAR95%= = -100 руб. Это означает, что для того, чтобы принять участие в этой игре, нам необходимо иметь как минимум 100 руб., чтобы расплатиться в 95% случаев. Только в 5% самых неблагоприятных случаев не хватит суммы в 100 руб., но вероятность 5% считаем достаточно малой и думаем, что повезет и этих неблагоприятных случаев не произойдет. Как видно, при таком подходе к оцениванию риска его мерой является количество денег (минимальный начальный запас), что удачно согласуется с финансовыми результатами экономических игр. Такая мера риска очень удобна для игроков на финансовых рынках, работающих с заемными средствами и/или на срочном рынке, поскольку фактически устанавливает ту сумму денег, которую должен зарезервировать игрок (инвестор), чтобы с высокой вероятностью покрыть свои возможные убытки, расплатиться по кредитным обязательствам и избежать банкротства. По этой причине VAR часто используется регулирующими органами для установления минимальных требований к собственному капиталу или требований по текущей ликвидности (денежным средствам).

В случае нормального распределения между двумя мерами риска— дисперсией и VAR имеется строгая зависимость. Поскольку нормальное распределение полностью определяется двумя параметрами М и о, то и любая характеристика этого распределения (в частности, любой квантиль) также определяется этими двумя параметрами. Это означает, что для нормального вероятностного распределения связь между дисперсией и VAR на любом доверительном уровне однозначна и имеет вид

где Z(1 - i) — квантиль порядка (1 - i) стандартного нормального распределения.

Значения квантилей табулированы, приведем несколько важных частных случаев:

Эти формулы имеют важное практическое значение. В подавляющем большинстве случаев не известно вероятностное распределение результатов экономических игр. Однако зачастую можно оценить некоторые характеристики неизвестного распределения, в частности ожидаемый результат и дисперсию. Тогда можно сделать предположение, что неизвестное распределение очень похоже на нормальное и можно оценивать VAR, используя выражения (10.1). Это предположение близко к истине для игр на финансовых рынках, поскольку цены многих важных активов определяются множеством самых разных случайных факторов, действующих зачастую несогласованно и раз- нонаправлено. Даже если вероятностное распределение результатов каждого из этих случайных факторов не является нормальным, их совместное распределение будет стремиться к нормальному.

Вероятностная постановка задачи выбора оптимальных решений в экономике более адекватно отражает реальные ситуации. Поэтому применение вероятностных моделей во многих случаях позволяет уменьшить риск при выборе наиболее эффективных решений. Однако применение указанных моделей связано с необходимостью определения вероятностных характеристик анализируемых процессов (ситуаций). Это существенно усложняет решение рассматриваемых задач. Во многих случаях вероятностное распределение экономических показателей бывает неизвестным. Поэтому возникает необходимость определения предпочтительных альтернатив при условии, что вероятностные характеристики экономических показателей являются неизвестными.

В условиях полной неопределенности, когда вероятности рассматриваемых ситуаций не известны, можно пользоваться правилом Лапласа, заключающимся в том, что все неизвестные вероятности Pj считают равными. После этого выбор эффективного решения можно принимать или по критерию Байеса или по критерию минимизации среднего риска. Подобный критерий принятия решения можно назвать принципом недостаточного обоснования Лапласа [32].

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >