Полная версия

Главная arrow Финансы arrow Математика управления капиталом: Методы анализа риска для трейдеров и портфельных менеджеров

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Стратегия среднего геометрического портфеля

То, в какой именно точке на эффективной границе вы будете находиться (т. е. какова эффективная КСП), является функцией вашего собственного неприятия риска, по крайней мере в соответствии с моделью Марковица. Однако есть оптимальная точка на эффективной границе, и с помощью математических методов можно найти эту точку. Если вы выберете КСП с наивысшим средним геометрическим HPR, то достигнете оптимальной КСП! Мы можем рассчитать среднее геометрическое из среднего арифметического HPR и стандартного отклонения HPR (обе эти величины у нас уже есть, так как они являются осями X и Y модели Марковица). Уравнения (1.16, а) и (1.16, б) дают нам формулу для оценочного среднего геометрического EGM (estimated geometric mean). Данный расчет очень близок (обычно до четвертого или пятого знака после запятой) к реальному среднему геометрическому, поэтому можно использовать оценочное среднее геометрическое вместо реального среднего геометрического:

или

где EGM — оценочное среднее геометрическое;

AHPR — среднее арифметическое HPR, или координата, соответствующая доходу по портфелю;

SD — стандартное отклонение HPR, или координата, соответствующая риску по портфелю;

V — дисперсия HPR, равная SD Л 2.

Обе формы уравнения (1.16) эквивалентны.

При КСП с наивысшим средним геометрическим рост стоимости портфеля будет максимальным; более того, данная КСП позволит достичь определенного уровня баланса за минимальное время.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>