Полная версия

Главная arrow География arrow Концепции современного естествознания

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Классификация моделей.

В зависимости от направленности моделирования (теоретическая или практическая) модели можно разделить на познавательные и прагматические [14]. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранить это расхождение путем изменения модели, так как познавательная деятельность ориентирована в основном на приближение модели к реальности, которую модель отображает. Примером здесь могут служить все усложняющиеся модели пространства и времени в естествознании.

Прагматические модели являются средствами управления и организации практических действий, способом представления образцовых действий или их результата. При их использовании в случае обнаружения расхождений между моделью и реальностью усилия направляют на изменение реальности так, чтобы приблизить реальность к модели. Прагматические модели носят нормативный характер, выполняя функцию стандарта, образца, под который «подгоняются» деятельность и ее результаты. Прагматические модели — это планы, алгоритмы и программы действий (например, по преобразованию ландшафта какой-либо территории) и т.д. Следовательно, познавательные модели стремятся отражать существующее, а прагматические — желаемое.

Модели также можно разделить на статические — модели конкретного состояния интересующего нас объекта — и динамические — когда возникает необходимость в отображении процесса изменений состояния. Например, в одних случаях нужны модели некоторого ландшафта в некоторый момент времени, а в других — модель сезонной смены его состояний; можно описать структуру кристалла алмаза, а можно рассмотреть процесс его формирования; можно характеризовать анатомию человеческого организма или построить модель его функционирования или развития.

Наибольшее распространение получила классификация моделей на абстрактные (мысленные, идеальные) и материальные (реальные, вещественные) в зависимости от способа их воплощения или реализации или на основании использования того или иного способа передачи информации, поскольку в распоряжении человека, создающего модель, имеются средства самого сознания и средства окружающего материального мира [ 18, 22].

Абстрактные модели — идеальные конструкции, построенные средствами мышления, сознания. Для человеческого мозга важную роль играют неязыковые формы мышления: эмоции, бессознательное, интуиция, озарение, образное мышление, подсознание и т.п. К абстрактным моделям относятся лингвистические конструкции — продукт мышления, готовый или почти готовый для передачи другим носителям языка. Естественные языки являются универсальным средством построения абстрактных моделей, поскольку на них можно говорить практически обо всем, и, кроме того, языковые модели обладают неоднозначностью. Многозначность слов (например, «мало», «много», «несколько») наряду с многовариантностью их возможных соединений во фразы позволяет отобразить любую ситуацию с достаточной для обычных практических целей точностью. Для ситуаций, когда приблизительность естественного языка становится недостатком, вырабатывается специфический язык. Например, у северных народов имеется несколько десятков разных слов, обозначающих снег в различных состояниях; языковые модели различных естественно-научных отраслей более точны и содержат больше информации, чем естественные языки. Новые знания аккумулируются в новых моделях, и если старых языковых средств для их построения не хватает, то возникают еще более специализированные языки. Одним из специальных и достаточно универсальных языков науки является математика.

В общем случае мысленные модели, используемые в естествознании, можно разделить на образные, образно-знаковые и знаковые. К образным моделям относятся неформализованные мысленные представления, гипотетические построения, разного рода модели-аналогии и прочие модельные представления; например, утверждая, что Земля похожа на шар, мы выстраиваем образную модель; в более сложном виде — это словесное описание некоторой гипотезы,теории, концепции или парадигмы. Образно-знаковые модели — разного рода схемы, графы, чертежи, графики — широко распространены в естествознании; так, в науках о Земле и астрономии большое значение имеет такой вид образно-знаковых моделей, как карты. Знаковыми моделями называют определенным образом интерпретированные системы. Наиболее важны в этой группе математические модели.

Материальные (реальные, вещественные) модели — некоторая материальная конструкция. Чтобы она могла быть отображением, т.е. замещала оригинал, между оригиналом и моделью должно быть установлено отношение схожести, подобия. В рамках материальных моделей по характеру подобия выделяют модели, построенные на принципе прямого и косвенного подобия; иногда выделяют модели условного подобия.

К построенным на основе прямого подобия относят пространственно и физически подобные модели. Пространственно подобные модели геометрически подобны оригиналу. Языком пространственно подобных моделей передаются наиболее общие черты формы объекта и соотношения определенных его частей, например фотографии, макет рельефа местности, масштабированные модели самолетов или гидротехнических сооружений, макеты зданий, шаблоны и т.п. Физически подобные модели обладают механическим, динамическим, кинематическим и другими видами подобия с оригиналом. Эти модели широко применяются во многих отраслях естествознания. Так, с их помощью изучают на небольших лабораторных установках деформации, происходящие в земной коре, формирование долин крупных рек, влияние еще не построенных гидроэлектростанций на окружающую среду и т.д.

Прямое подобие (геометрически и физически подобные модели) связано с проблемой переноса результатов моделирования на оригинал. Например, при изучении поведения русла реки на уменьшенной модели часть условий эксперимента можно привести в соответствие с натурой, изменяя масштабы модели (скорость течения, глубина потока, морфология русла), а часть условий (вязкость и плотность воды, сила тяготения, определяющие свойства волн, и т.д.) не может быть масштабирована. Задачами пересчета данных модельного эксперимента на реальные условия занимается теория подобия, которая позволяет перейти с использованием коэффициентов подобия от оригинала к модели и наоборот.

Косвенное подобие оригинала и модели — аналогия — проявляется в совпадении или достаточной близости их абстрактных моделей и используется в практике реального моделирования. Наиболее известна электромеханическая аналогия, основанная на том, что некоторые закономерности электрических и механических процессов описываются одинаковыми дифференциальными уравнениями, различающимися лишь физической интерпретацией переменных, входящих в эти уравнения. Поэтому можно не только заменить неудобное и громоздкое экспериментирование с механической конструкцией на простые опыты с электрической схемой, перепробовать множество вариантов, не переделывая конструкцию, но и проверить на модели варианты, в механике пока не осуществимые (например, с произвольным и непрерывным изменением массы, длины и т.д.). Роль моделей, обладающих косвенным подобием оригиналу, очень велика. Например, часы являются аналогом времени; подопытные животные у медиков — аналоги человеческого организма; автопилот — аналог летчика; электрический ток в подходящих цепях может моделировать течение воды в водоносном горизонте или в русле реки, а также транспортные потоки, перенос информации в сетях связи и т.д.

Модели условного подобия основаны на том, что подобие оригиналу устанавливается в результате соглашения. К ним причисляют различные географические карты и планы (модели местности), рабочие чертежи (модели будущей продукции), разнообразные сигналы (модели сообщений), деньги (модель стоимости) , удостоверения личности (официальная модель владельца) и т.д. Данные модели являются вещественной формой, в которой абстрактные модели могут передаваться от одного человека к другому, храниться до момента их использования на основе соглашения о том, какое именно состояние реального объекта ставится в соответствие конкретной абстрактной модели. Обычно эти соглашения формулируются в виде совокупности правил построения моделей условного подобия и правил пользования ими. (Заметим, что выше эти модели мы определяли как мысленные образно-знаковые. Это подчеркивает условность рассматриваемой классификации, а также широту охвата и многоплановость модельных представлений.)

Основные типы моделей систем. При изучении систем используют модели «черного», «белого» и «серого» ящика. Систему представляют как «черный ящик», если неизвестно внутреннее строение самой системы; ее поведение и функционирование изучается по входному и выходному сигналам. При изучении системы как «белого ящика», наоборот, известны все элементы и их взаимосвязи. Систему рассматривают как «серый ящик», когда что-то из внутреннего строения объекта известно, а что-то остается неизвестным, например модель состава системы с неизвестной структурой или модель структуры с неизвестным составом.

Модель черного ящика

Р и с. 4.1. Модель черного ящика

В рамках модели черного ящика внутреннее устройство системы изображают в виде непрозрачного ящика, выделенного из окружающей среды (рис. 4.1). Эта модель отражает два важных свойства системы — целостность и обособленность от среды [14].

Система не является полностью изолированной от среды, она связана со средой и с помощью этих связей взаимодействует с ней (входы и выходы системы). В модели черного ящика отсутствуют сведения о внутреннем содержании системы, а задаются, фиксируются и перечисляются только входные и выходные связи системы со средой. В одних случаях достаточно содержательного словесного описания входов и выходов; тогда модель является просто их списком. В других случаях требуется количественное описание некоторых или всех входов и выходов с заданием двух множеств X и У входных и выходных переменных.

Модель черного ящика в ряде случаев является единственно применимой при изучении систем. Например, при исследовании психики человека или влияния лекарства на живой организм ученый лишен возможности вмешательства в систему иначе как только через ее входы и делает выводы лишь на основании наблюдения за ее выходами. Часто приходится ограничиваться моделью черного ящика в связи с отсутствием данных о внутреннем устройстве системы. Например, мы не знаем, как «устроен» электрон, но знаем, как он взаимодействует с электрическими и магнитными полями, с гравитационным полем. Это и есть описание электрона на уровне модели черного ящика.

Для решения вопросов, касающихся внутреннего устройства системы, недостаточно только модели черного ящика — необходимы более развитые модели. Например, любая система внутренне неоднородна, что позволяет различать составные части самой системы, причем некоторые части системы в свою очередь могут быть разбиты на составные части и т.д. Части системы, которые рассматриваются как неделимые, называют элементами, а части системы, состоящие более чем из одного элемента, — подсистемами. В результате получается модель состава системы, которая описывает, из каких подсистем и элементов состоит система (рис. 4.2) [14].

Для того чтобы составить представление о свойствах изучаемого объекта, часто бывает необходимо выявить определенные связи (отношения) между элементами. Структурой называют совокупность связей элементов, обеспечивающих целостность системы. Модель структуры в простейшем виде представляет собой список существенных для решения конкретной задачи отношений. Так, при расчете механизма не учитываются силы взаимного притяжения его деталей, хотя, согласно закону всемирного тяготения, такие силы объективно существуют; в то же время вес деталей (т.е. сила их притяжения к Земле) учитывается обязательно.

Модель состава системы [14]

Рис. 4.2. Модель состава системы [14]

Поскольку все структурные схемы имеют много общего, возможно абстрагироваться от их содержательной стороны и построить схемы, в которых обозначены только элементы и связи между ними, а также (в случае необходимости) разница между элементами и между связями. Такая схема называется графом. Граф (рис. 4.3) состоит из обозначений элементов произвольной природы — вершин и обозначений связей между ними — ребер (дуг). Если необходимо отразить несимметричность некоторых связей, линию, изображающую ребро, снабжают стрелкой. Если направления связей не обозначаются, граф называют неориентированным, при наличии стрелок — ориентированным (полностью или частично). Любая пара вершин может быть соединена с любым количеством ребер; вершина может быть соединена сама с собой (тогда ребро называют петлей). Если в графе требуется отразить другие различия между элементами или связями, то либо приписывают разным ребрам различные веса (взвешенные графы), либо раскрашивают вершины или ребра (раскрашенные графы) [1,2,13].

Пример графа [2]

Рис. 4.3. Пример графа [2]

Графы могут изображать любые структуры, в том числе в различных областях естествознания. Так, при анализе природных систем часто используют линейные, древовидные (иерархические), матричные и сетевые структуры (рис. 4.4). Например, в виде древовидного графа можно изобразить речной бассейн и изучать соотношение притоков и главного русла.

Разновидности графов с линейной структурой (а), древовидной (б), матричной (в) и сетевой (г) [2]

Рис. 4.4. Разновидности графов с линейной структурой (а), древовидной (б), матричной (в) и сетевой (г) [2]

Если соединить модели черного ящика, состава и структуры, то образуется модель под названием белый (прозрачный) ящик (рис. 4.5). В белом ящике указываются все элементы системы, все связи между элементами внутри системы и связи определенных элементов с окружающей средой (входы и выходы системы). Такие модели часто называют структурными схемами системы [14].

Если при исследовании системы не учитываются ее изменения во времени, то модель называется статической. Чтобы понять и описать, как система работает (функционирует) и что происходит с ней самой и с окружающей средой в ходе ее развития, нужны такие модели, которые отражают поведение систем, описывают происходящие с течением времени изменения, последовательность этапов, операций, действий, причинно-следственные связи. Модели, отображающие изменения в системах в течение времени, называются динамическими.

Структурная схема, или модель белого ящика [14]

Рис. 4.5. Структурная схема, или модель белого ящика [14]

Разработано большое количество динамических моделей, описывающих процессы с различной степенью детальности: от самого общего понятия динамики, движения вообще, до формальных математических моделей конкретных процессов типа уравнений движения в механике или волновых уравнений в теории поля.

Обычно говорят о двух типах динамики системы: функционировании, т.е. устойчивой последовательности постоянно действующих процессов в системах, обеспечивающей сохранение того или иного характерного для значительного отрезка времени состояния этой системы, и развитии — необратимом, направленном, закономерном изменении системы, которое может привести к смене структуры системы. Типы динамических моделей такие же, как и статических, но элементы этих моделей имеют временной характер. Так, динамический вариант черного ящика содержит указания о начальном (вход) и конечном (выход) состояниях системы; модели состава соответствует перечень этапов в некоторой упорядоченной последовательности действий; динамический вариант белого ящика — подробное описание происходящего или планируемого процесса.

Этапы системного исследования моделей. Любое системное исследование имеет определенную структуру и проводится по определенному алгоритму. Так, для целей экологии Дж. Джефферс рекомендует алгоритм, показанный на рис. 4.6 и включающий следующие этапы системного анализа: выбор проблемы, постановку задачи и ограничение степени ее сложности, установление иерархии целей и задач, выбор путей решения, моделирование, оценку возможных стратегий и, наконец, внедрение результатов [9]. Ф.И. Перегудов и Ф.П. Тарасенко предлагают другой алгоритм постановки задач системного исследования, изображенный на рис. 4.7, где помимо опорной последовательности действий (утолщенные сплошные линии) предусматривается возможность возврата к уже выполненным действиям в случае необходимости (штриховые линии) [14].

Этапы системного анализа по |9|

Рис. 4.6. Этапы системного анализа по |9|

Этапы системного анализа по [ 14]

Рис. 4.7. Этапы системного анализа по [ 14]

Однако системный анализ, а тем более системный подход не предполагает строго определенного набора рецептов. Поэтому, говоря о некоторых этапах и направлении системной деятельности, следует рассматривать их только как руководство к действию. При решении конкретных задач часть этапов может быть исключена или изменен порядок их следования. Иногда приходится повторять эти этапы в различном порядке. Например, если необходимо уточнить роль исключенных на первых этапах из рассмотрения факторов, требуется пройти несколько раз этапы моделирования и оценки возможных стратегий; для проверки адекватности целевой структуры исследования придется время от времени возвращаться к одному из ранних этапов даже после выполнения значительной части работы на более поздних этапах анализа и т.д.

Рассмотрим специфику системного исследования в естествознании на примере алгоритма Джефферса (см. рис. 4.6) [9].

  • 1. Выбор проблемы. Выбор некой проблемы, которую можно исследовать только с помощью системного анализа, не всегда оказывается тривиальным шагом, но всегда столь же важен, как и правильный выбор метода исследования. Ведь можно взяться за решение проблемы, не поддающейся системному анализу, либо выбрать проблему, которая не требует для своего решения всей мощи системного анализа и изучать которую данным методом неэкономично.
  • 2. Постановка задачи и ограничение степени ее сложности. Этот этап связан с упрощением задачи в той мере, чтобы она могла иметь аналитическое решение и в то же время сохранить все те элементы, которые делают проблему интересной для изучения. Успех или неудача исследования во многом зависит от умения сохранить равновесие между упрощением и усложнением, при котором остаются все связи с исходной проблемой, достаточные для того, чтобы аналитическое решение поддавалось интерпретации. Может оказаться, что проект не осуществлен из-за того, что принятый уровень сложности затруднил последующее моделирование, не позволил получить решение или, напротив, в результате системного исследования получено тривиальное решение задачи, не требующее применения системного анализа.
  • 3. Установление иерархии целей и задач. Обычно цели и задачи исследования образуют иерархию, причем основные задачи последовательно подразделяются на ряд второстепенных. В такой иерархии следует определить приоритеты различных этапов и соотнести их с теми усилиями, которые необходимо приложить для достижения поставленных целей. Так, в прикладном исследовании можно присвоить сравнительно малый приоритет тем целям и задачам, которые, хотя и важны с точки зрения получения научной информации, довольно слабо влияют на вид воздействий на систему и управление ею. Однако когда данная задача составляет часть программы какого-то фундаментального исследования, исследователь заведомо ограничен в выборе форм управления и концентрирует усилия на решении задач, которые непосредственно связаны с конкретными процессами. В любом случае условием успешного применения системного анализа является четкое определение приоритетов различных задач.
  • 4. Выбор путей решения задачи. В общем случае следует искать наиболее общее аналитическое решение, что позволит максимально использовать результаты исследования аналогичных задач. Обычно любую задачу можно решать более чем одним способом и применять решение, подобное известному, следует при допущениях, справедливых для данного конкретного случая. Поэтому полезно разрабатывать несколько альтернативных решений и выбрать то из них, которое лучше подходит для данной задачи.
  • 5. Моделирование. Приступая к этапу моделирования, необходимо помнить, что моделируемым процессам, а также механизмам обратной связи присуща внутренняя неопределенность, а это может значительно усложнить как понимание системы, так и ее управляемость. Кроме того, в самом процессе моделирования при выработке решения о подходящей стратегии нужно учитывать ряд правил.

Процесс моделирования структурирован, т.е. состоит из последовательности этапов. Этапы различаются качественно, конкретными целями и средствами и должны выполняться в определенной очередности. Например, при имитационном моделировании выделяют: формирование целей моделирования—построение абстрактной модели—создание имитационной реальной модели—ее исследование—обработку и интерпретацию результатов.

Однако на практике чаще всего не удается строго выдержать рекомендуемую последовательность действий. Более того, очевидно, что нельзя выработать какой-то единый, пригодный для всех случаев алгоритм моделирования, поскольку в процессе создания моделей кроме осознанных формализованных, технических и научных приемов значительное место занимает творческое, интуитивное начало.

  • 6. Оценка возможных стратегий. На этапе оценки потенциальных стратегий, полученных на модели, исследуется чувствительность результатов к допущениям, сделанным при построении модели, поскольку правомерность этих допущений можно проверить лишь в процессе использования модели. Если окажется, что основные допущения некорректны, возможно, придется вернуться к этапу моделирования, но часто удается улучшить модель, незначительно модифицировав исходный вариант. Обычно также исследуют чувствительность модели к тем аспектам проблемы, которые были исключены из формального анализа на этапе, когда ставилась задача и ограничивалась степень ее сложности.
  • 7. Внедрение результатов. Если исследование проводилось по описанной выше схеме, то шаги, которые необходимо предпринять для внедрения результатов, достаточно очевидны. Заметим, что на последнем этапе может выявиться неполнота исследования на тех или иных этапах и необходимость их пересмотра, т.е. понадобится повторить какие-то этапы.

В заключение еще раз заметим, что возможности системного подхода огромны, но предлагаемые для исследования естественно-научные проблемы не всегда требуют использования арсенала системного подхода. Этот подход не отменяет и не заменяет классические исторически сложившиеся методы изучения природы — он его дополняет и обогащает, определяя специфику современного естествознания.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>