Полная версия

Главная arrow География arrow Концепции современного естествознания

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Информация как мера организованности системы.

Информация — специфическая форма взаимодействия между объектами любой физической природы или, точнее, такой аспект взаимодействия, который несет сведения о взаимодействующих объектах. В сущности, информация — мера организованности системы в противоположность понятию энтропии как меры неорганизованности [5, 6, 14].

Представление об энтропии как мере неорганизованности было введено Р. Клаузиусом в связи с изучением термодинамических явлений. Л. Больцман дал статистическую интерпретацию энтропии, позволившую рассматривать энтропию как меру вероятности пребывания системы в конкретном состоянии. Больцман показал, что природные процессы стремятся перевести термодинамическую систему из состояний менее вероятных в состояния более вероятные, т.е. привести систему в равновесное состояние, для которого значения энтропии (неупорядоченности) максимальны. После построения в середине XX в. К.Э. Шенноном теории информации оказалось, что формула Больцмана для термодинамической энтропии и формула Шеннона для информационной энтропии тождественны [21]. Таким образом, понятие энтропии приобрело более универсальный смысл в изучении систем различного происхождения.

Изучение потоков информации в системах имеет очень большое значение. Так, если вещественные и энергетические потоки обеспечивают целостность системы и возможность ее существования, то потоки информации, переносимые сигналами, организуют все ее функционирование, управляют ею. Поэтому при изучении любого объекта как системы не следует ограничиваться рассмотрением и описанием вещественной и энергетической его сторон, необходимо проводить исследование информационных аспектов системы (сигналов, информационных потоков, организации, управления и т.д.).

Информационный анализ систем использует представление о сигналах — носителях информации, средстве перенесения информации в пространстве и времени. В качестве сигналов выступают состояния некоторых объектов: чтобы два объекта содержали информацию друг о друге, необходимо соответствие между их состояниями; тогда по состоянию одного объекта можно судить о состоянии другого. Соответствие между состояниями двух объектов устанавливается либо в результате непосредственного взаимодействия, либо с помощью взаимодействия с промежуточными объектами. Например, от преподавателя до ушей студентов звук переносят колебания воздуха.

Не всякое состояние имеет сигнальные свойства, поскольку объект взаимодействует не только с тем объектом, информацию о котором требуется получить, но и с другими объектами, в результате чего соответствие состояний ослабевает. Условия, обеспечивающие установление и способствующие сохранению сигнального соответствия состояний, называют кодом, а посторонние воздействия, нарушающие это соответствие, — помехами или шумами.

Нарушение соответствия состояний возможно не только вследствие помех, но и из-за рассогласования кодов взаимодействующих объектов. При этом предполагается, что в природных системах согласование кодов происходит в самой структуре систем путем естественного отбора различных вариантов. Сигналы делятся на два типа:

О статические сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти компьютера, положение триангуляционной вышки и т.д.);

О динамические сигналы, в качестве которых могут выступать динамические состояния силовых полей. Изменение состояния таких полей приводит к распространению возмущения, конфигурация которого во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств. Примерами таких сигналов могут служить звуки (изменение состояния поля сил упругости в газе, жидкости или твердом теле), световые и радиосигналы (изменения состояния электромагнитного поля).

Так как сигналы — это состояния физических объектов, можно математически описать данное явление. Например, можно зафиксировать звуковые колебания, соответствующие конкретному сигналу, в виде зависимости давления хот времени /и изобразить этот сигнал функцией x(t). Функцией можно изобразить и статический сигнал, например запись звука на магнитной ленте, поставив в соответствие параметру /протяженность (длину) записи. Однако между просто состоянием объекта и сигналом имеется существенное различие: единственная функция х(/) не исчерпывает всех важных свойств сигналов. Дело в том, что понятие функции предполагает, что нам известно значение х (либо правило его вычисления) для каждого интервала времени /. Но если это известно получателю сигнала, то отпадает необходимость в его передаче, так как функция х(/) может быть и без этого воспроизведена на приемном конце. Следовательно, функция приобретает сигнальные свойства только тогда, когда она является одной из возможных функций. Моделью сигнала может быть набор (ансамбль) функций параметра t, причем до передачи сигнала неизвестно, какая из них будет отправлена. Каждая такая конкретная функция называется реализацией. Если ввести вероятностную меру на множество реализации, то получается математическая модель, называемая случайным процессом.

Специфическим для теории информации является понятие неопределенности случайного объекта, для которой и была введена количественная мера — энтропия. Пусть, например, некоторое событие может произойти с вероятностью 0,99 (99 %) и не произойти с вероятностью 0,01 (1 %), а другое событие имеет вероятности соответственно 0,5 (50 %) и 0,5 (50 %). В первом случае результатом опыта «почти наверняка» является наступление события, а во втором неопределенность исхода так велика, что от прогноза разумнее воздержаться.

В качестве меры неопределенности случайного объекта Л с конечным множеством возможных состояний Аи ..., Л„, соответствующих вероятностямрх,..., рп, принимают величину

которую называют энтропией случайного объекта А (или распределения вероятностей {/?,.}) и используют в качестве меры неопределенности. Обобщение этой меры на непрерывные случайные величины выглядит следующим образом:

Функция h(X) получила название дифференциальной энтропии и является аналогом энтропии дискретной (прерывной) величины. Такой подход позволяет интерпретировать процесс получения информации как изменение неопределенности в результате приема сигнала. Тогда количество информации можно представить как меру снятой неопределенности: числовое значение количества информации о некотором объекте равно разности априорной и апостериорной энтропии этого объекта, иначе говоря, как меру уменьшения неопределенности в результате получения сигнала. При этом в результате обработки уже полученных данных содержащееся в них количество информации не может быть увеличено. Следовательно, обработка делается лишь для представления информации в более удобном, компактном виде и в лучшем случае без потери полезной информации.

Информация и энтропия — безразмерные величины. За единицу энтропии принимают неопределенность случайного объекта, такого, что

т.е. энтропия (неупорядоченность) равна единице (достигает максимального значения) приданном т, когда все исходы равновероятны, и равна нулю в том случае, когда одна изpt равна единице, а остальные равны нулю, т.е. когда исход опыта достоверен. Следует конкретизировать число т состояний объекта и основание логарифма. Наименьшее число возможных состояний, при котором объект остается случайным, равняется 2 = 2). Если в качестве основания логарифма также взять число 2, то единицей неопределенности служит энтропия объекта с двумя равновероятными состояниями — бит. Например, количество информации 1 бит дает бросание монеты. Для непрерывных величин обычно употребляется другая единица (нит), которая получается при использовании натурального логарифма.

При обмене информацией между системами возникают специфические эффекты, полезные для анализа систем. Например, избыточность — явление не всегда отрицательное. При искажениях, выпадениях и вставках символов именно избыточность позволяет обнаружить и исправить ошибки.

Важным понятием является скорость передачи информации — количество информации, передаваемое в единицу времени. В дискретном случае единицей времени удобно считать время передачи одного символа. Для непрерывных каналов единицей времени может служить либо обычная единица (например, секунда), либо интервал между отсчетами. Для более наглядного представления об этой величине укажем, что темп обычной речи человека соответствует скорости примерно 20 бит/с, муравьи обмениваются информацией (путем касания усиками) со скоростью около 0,1 бит/с. Скорость передачи информации по каналу связи зависит от многих факторов (энергия сигнала, количество символов в алфавите, избыточность, способ кодирования и декодирования и т.д.) и не превышает некоторого предела, называемого пропускной способностью канала. Например, пропускные способности зрительного, слухового и тактильного (осязательного) каналов связи человека составляют приблизительно 50 бит/с. Если включить в канал и «исполнительные» органы человека (например, предложить ему нажимать педаль или кнопку в темпе получения сигналов), то пропускная способность снизится до 10 бит/с.

Теория информации имеет большое значение для системного подхода. Ее конкретные методы и результаты позволяют проводить количественные исследования информационных потоков в изучаемой системе. Однако более важным является эвристическое значение основных понятий теории информации — неопределенности, энтропии, количества информации, избыточности, пропускной способности и др.

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>