ПОДХОДЫ К ТЕПЛОВОМУ РАСЧЕТУ ВИХРЕВЫХ ТРУБ

А.Ю.Орлов, Н.В.Орлова

ФГБОУ В ПО « Тамбовский государственный технический университет»,

Тамбов, Россия, Этот адрес e-mail защищен от спам-ботов. Чтобы увидеть его, у Вас должен быть включен Java-Script DOI: 10.12737/2321

Задача проектирования и расчёта вихревой трубы для сжимаемых газов инженерно обычно ставится в таком виде, заданы: необходимая температура, например, горячего потока Тгор°С и теплопроизводительность, например, в виде количества тепла, вносимого в проектируемый аппарат (сушилку, жидкостный аппарат, газо-жидкостный реактор и пр.) этим потоком: агор = сгорргор,[дж/с=вт; здесь Gzop - массовый расход горячего продукта, кг/с; ср - дж/с; Тгор отсчитывается от О °С; может быть и прямо задан требуемый расход горячего продукта Gaop; аналогичные требования могут быть заданы для холодного потока GXOJl, а, если удаётся полезно использовать оба потока-то же самое и для горячего, и для холодного потоков; суть, сложность решения и методика описания от этого в принципе не меняются.

Требуется найти необходимые для этого размеры основных элементов вихревой трубы (прежде всего, сопел завихрителя, рабочих диаметра и длины трубы) и давление продукта на входе в завихритель (оно определяет расход сжатого воздуха или жидкости); при этом нужно по возможности минимизировать энергозатраты на создание давления (сжатие), варьируя конструктивные размеры трубы.

Сначала выполняется газо-гидродинамический расчёт, затем - тепловой (тепло-диффузионный). При наличии оценочных значений «коэффициентов реальности», предварительную тепловую прикидку целесообразно сделать до гидравличского расчёта, а после него тепловой расчёт повторить по уточнённым данным.

В исходных уравнениях для описания работы и расчета вихревой трубы для оценки температурных эффектов, пока не известны сами физические причины термосепарации - использовать термодинамические уравнения сохранения энергии, возрастания энтропии и пр., преждевременно, поскольку этими уравнениями должны были бы учитываться эти причины.

Тепловой (термодинамический) расчет наиболее объективно проводить на базе: 1) «тормозного» нагрева; 2) расширительного охлаждения; 3) вязкостной диссипации. Для учета отклонений от действительности вводится «коэффициент реальности» кгеакоторый имеет иной смысл, чем КПД и может быть больше, меньше или равен единице.

1) «Тормозной» нагрев или температура адиабатического торможения Г0 = Tad. Температуру Таd принимает газ с температурой Т и скоростью w при полном адиабатном торможении до нулевой скорости (за счет превращения кинетической энергии потока в тепловую).

Для идеальных газов

Воздух в наших условиях можно считать идеальным газом.

Из (1) получаем при начальной температуре воздуха на входе Т = 20 °С и теплоемкости ср = 1006 Дж/(кг • °С) для скоростей 50... 1000 м/с предельные температуры торможения:

W, м/с

50

100

200

300

331

400

500

600

700

800

900

1000

О

О

21,2

25

39,9

64,7

74,5

99,5

144,3

198,9

263,5

338,1

422,6

517

Это намного ниже температур нагрева в ВТ и таким образом, несмотря на физическую ясность и очевидную достоверность теоретической термодинамической зависимости (1), расчет реальных температур нагрева потока, которые должны наблюдаться в вихревых трубах, оказывается невозможным и нужно вводить упомянутый «коэффициент реальности»:

2) Расширительное охлаждение в процессе типа детандерного также оказывается в известном смысле в вихревых трубах «умозрительным», так как газ при этом должен совершать внешнюю работу. Однако дросселирование для воздуха вообще отсутствует и приходится выбирать за базу изоэнтропическое расширительное охлаждение.

Теоретически при изоэнтропном расширении идеального газа

Для наиболее используемого диапазона давлений в вихревых трубах 1...6 атм получаем:

Р, МПа

0,2

0,3

0,4

0,5

0,6

0,7

т2, °с

-32,6

-58,9

-75,8

-88,0

-97,4

-105,0

Это, наоборот, намного превышает реальный эффект. Таким образом, и здесь не обойтись без «коэффициента реальности»:

Для работы ВТ на воде нет ни детандерного, ни дроссельного эффектов.

3) Вязкостная диссипация: для воздуха предположительно имеет место дополнительно к трению и местным сопротивлениям, для воды также возможна. Это наиболее сложный и неясный вопрос.

Мощность, затрачиваемая на сжатие газа (без потерь в компрессоре), выражается соотношениями:

для адиабатического сжатия

для изотермического сжатия

В испытанных нами трубах расходы лежат в пределах 0,005.. .0,030 кг/с.

При сравнении величин мощностей на адиабатическое и изотермическое сжатие для расходов воздуха GBX = 0,01 кг/с, при давлении на выходе из вихревой трубы 1 ата были получены следующие результаты:

рК, МПа

0,1

0,2

0,3

0,4

0,5

0,6

Nt, Вт

636,2

1071

1412

1696

1942

2160

К, Вт

575,3

911,8

1151

1336

1487

1615

Ns-Nr, Вт

60,9

159,2

261

360

455

545

При адиабатическом сжатии расходуемая мощность больше на 10...25%, чем при изотермическом, что объясняется дополнительным расходом энергии на нагрев (которая отводится охлаждением в компрессорной установке). При полном преобразовании этой энергии в тепло нагрев воздуха будет составлять около 50...200 °С.

Получаем оценку дополнительного тепловыделения в «условном» виде:

которая легко пересчитывается в температуры дополнительного диссипативного нагрева rad.diss-

«Коэффициенты реальности» находятся обработкой экспериментальных данных на базе подтверждаемых и непротиворечивых физико-теоретических соображений.

Например, в наших экспериментах для температур 110... 120 °С они составляли: krea stagn temP= 1,8...2,2 (на °С), т.е. реальный нагрев существенно выше (при этом скорости на выходе из улитки были 120...200 м/с при давлениях 4.. .4,5 атм);

?reai exp cool= 0,2...0,25, т.е. здесь, наоборот, теоретическое «детандерное» охлаждение должно давать перепад температур в 4-5 раз больше; при этом доля горячего потока составляет всего 10...20% от общего; оценка дополнительных диссипативных потерь Arreal add diss = 1 С)___15% от мощности

компрессора Ns или NT - весьма предположительная.

Список литературы

  • 1. Меркулов А.П. Вихревой эффект и его применение в технике. Изд 2-е, перераб. и дополи. - Самара: Оптима, 1997. - 344 с.
  • 2. Тарнопольский А.В. Вихревые теплоэнергетические устройства.- Пенза: Изд-во Пенз. ГУ, 2007. - 184 с.
  • 3. Коновалов, В.И. Сушка и другие технологические процессы с вихревой трубой Ранка-Хилша: возможности и экспериментальная техника / В.И. Коновалов, А.Ю. Орлов, Н.Ц. Гатапова // Вестник Тамбовского государственного технического университета. - 2010. - Т. 16, № 4. - С. 803 - 825.
  • 4. О возможностях высокотемпературной сушки красителей и послеспиртовой барды с вихревой трубой / А.Ю. Орлов, В.И. Коновалов, Н.Ц. Гатапова, Н.В. Орлова // Современные энергосберегающие тепловые технологии (сушка и термовлажностная обработка материалов). СЭТТ-2011 : тр. Четвертой Междунар. науч.-практ. конф. - М., 2011. - Т. 1. - С. 381 - 383.
  • 5. Коновалов, В.И. Разработка расчета вихревых труб Ранка-Хилша / В.И. Коновалов, А.Ю. Орлов, Т. Кудра // Вестник Тамбовского государственного технического университета. - 2012. - Т. 18, № 1. - С. 74 - 107.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >