Полная версия

Главная arrow Медицина arrow Вестник новых медицинских технологий, №1 март

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

УСТОЙЧИВОСТЬ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ И МЕТОДЫ ЕЕ ОЦЕНКИ Л.В. МЕЗЕНЦЕВА, С.С. ПЕРЦОВ

Проблема устойчивости физиологических функций - важный раздел теоретической физиологии. Основные идеи П.К.Анохина - теория функциональных систем и системный подход к исследованию физиологических функций положили начало развитию теоретической физиологии и математического моделирования в биомедицине. В статье излагаются методологические аспекты использования различных видов биомоделей для оценки устойчивости физиологических функций. Рассмотрены экспериментальные, генетические, математические и компьютерные биомодели. Практические методики оценки устойчивости проиллюстрированы на примере устойчивости сердечно-сосудистых функций к стрессорпым нагрузкам. Приведены примеры различных экспериментальных моделей стресса и методов оценки влияния стрессорпых нагрузок на электрическую стабильность сердца. Электрическая стабильность сердца оценивалась по порогам возникновения фибрилляции желудочков. Помимо экспериментальных, приведены примеры математических и компьютерных методов оценки устойчивости сердечно-сосудистых функций к стрессорпым нагрузкам. Математическая модель, позволяющая исследовать устойчивость сердечного ритма, основывается на известных принципах экспериментальной электрофизиологии сердца, описывающих распространение электрического возбуждения в его различных структурах. Модель позволяет описать явления, наблюдаемые при постепенном возрастании величины стрессорпой нагрузки. Показано существование критической точки перехода кардиодинамики из линейного режима в хаотический. Показано, что наибольшей устойчивостью отличается линейный режим. Для этого режима малые погрешности в значениях начальных условий не способны резко изменить исходную динамику RR интервалов.

Устойчивость, стабильность - универсальные понятия, используемые в различных сферах человеческой жизни, начиная от бытовых (устойчиво научился ходить ребенок, устойчиво работает та или иная бытовая техника). В медицине понятие «устойчивость» употребляется для обозначения степени тяжести состояния больного: «стабильное», «стабильно тяжелое» и т.д. В психологии - для обозначения людей с «устойчивой» и «неустойчивой» психикой. В физике под «устойчивостью движения» понимается способность движущейся механической системы не отклоняться от траектории при незначительных случайных воздействиях. Устойчивостью движения должны обладать автомобиль, самолет, снаряд, ракета и др. Анализ различных определений понятия «устойчивость» и классификацию систем по типам устойчивости можно найти в монографии В.В. Артюхова [1]. В монографии рассматриваются виды устойчивости, связанные с такими понятиями, как инерционность, симметрия, адаптивность, гомеостаз. Автор приводит 38 различных определений понятия «устойчивость» и дает еще одно, собственное определение: устойчивость - это свойство системы С совпадать по признакам { П ) до и после изменений { И } вызванных действием комплекса факторов { Ф }.

Строгие математические определения понятия «устойчивость» берут начало от изучения устойчивости движения механических систем. Движение любой механической системы зависит от действующих сил и начальных условий, исходя из которых, можно теоретически рассчитать, как будет двигаться система. Движение, соответствующее этому расчёту, называется невозмущённым. Но на практике истинные значения начальных условий обычно изменяются из-за влияния внешних случайных возмущений. Движение, которое система будет совершать при наличии этих возмущений, называется возмущённым движением. Если при малых начальных возмущениях характеристики движения всё последующее время мало отличаются от невозмущённых, движение называется устойчивым. Если же характеристики движения со временем будут всё более и более отличаться от невозмущённых, го движение системы называется неустойчивым. Эти определения соответствуют определению устойчивости движения по А.М. Ляпунову, который заложил основы точной математической теории устойчивости механических систем. На практике эта теория может быть применима не только к механическому движению, но и к любым другим сложным системам, поведение которых может быть описано с помощью дифференциальных уравнений. Наиболее широко используется классические методы оценки устойчивости в технических системах, и, в частности, при проектировании систем автоматического управления. Для нормального функционирования таких систем необходимо, чтобы система была устойчивой, гак как в противном случае в ней возникнут большие ошибки.

В отличие от механических, в биомедицинских системах мы сталкиваемся с невозможностью применения к ним математических методов оценки устойчивости, так как в большинстве случаев нам не известны дифференциальные уравнения, описывающие их состояние. Для того, чтобы сформулировать дифференциальные уравнения биологической системы, нужно создать математическую модель, которая смогла бы описать всю совокупность известных экспериментальных данных и предсказать новые закономерности. Разработка таких математических моделей - предмет исследования теоретической биологии. Теоретическая биология получила известную парадигму в работах

Ходжкина и Хаксли, которые сформулировали известные уравнения, описывающие проведение электрического импульса по нервному волокну. Проблемам математического моделирования биологических систем посвящена монография А.С. Братуся и соавт., в которой наряду с классическими моделями, такими как хищник-жертва, Лотки- Вольтерры и Гаузе, конкуренции видов, распространения эпидемий Кермака-Маккендрика, рассматриваются модели, которые были предложены совсем недавно: модели эволюции семейств генов, распространения эпидемий в неоднородных популяциях и другие [3]. Изложению существующих математических моделей физиологических процессов посвящена монография Джеймса Кинера и Джеймса Снейда [18]. Книга состоит из двух частей: часть первая - «Клеточная физиология», часть вторая - «Системная физиология». В части «Клеточная физиология» изложены фундаментальные принципы математического описания биохимических процессов, ионных потоков, клеточной возбудимости, нервной проводимости. В части второй - «Системная физиология», излагаются математические модели различных функциональных систем организма - сердечно-сосудистой, дыхательной, мышечной, гормональной, мочевыделительпой, а также систем зрения и слуха.

Однако, несмотря на большое разнообразие существующих в физиологии математических моделей, общая картина теоретической физиологии еще не создана. Причиной тому является отсутствие системного подхода и единой методологии математического моделирования в физиологии, приводящее к многочисленности несвязанных между собой подходов и несравнимости моделей между собой. Несовершенство многих моделей обусловлено также их основным недостатком - отсутствием этапа математической идентификации модели. Это означает, что результаты моделирования проверяются на соответствие реальным экспериментальным данным только качественно, а этап количественного сопоставления отсутствует. В то же время именно этот этап позволяет постоянно уточнять и совершенствовать модель, доводить ее до уровня максимально полного совпадения с экспериментом. Модель должна быть тонким инструментом, позволяющим исследовать то, что недоступно экспериментатору, выявлять механизмы, лежащих в основе изучаемых процессов. Теоретическая физиология в настоящее время еще не создана, она представляет собой множество разрозненных моделей, как правило, не прошедших этап идентификации, не обладающих необходимой общностью, чтобы их можно было рассматривать с системных позиций. По этой причине изучение вопросов устойчивости физиологических функций с применением строгих математическое методов и критериев чрезвычайно ограничено. Несмотря на это, понятие «устойчивость физиологических функций» широко применяется физиологии. Оно получило широкое распространение одновременно с проникновением в физиологию кибернетических идей и сформулированного П.К. Анохиным принципа саморегуляции и системного подхода к изучению физиологических функций. Согласно этому принципу, «отклонение результата деятельности функциональной системы от уровня, обеспечивающего нормальный метаболизм, немедленно вызывает цепь центрально-периферических процессов, направленных на восстановление оптимального уровня данного результата. Именно благодаря динамической са- морегуляторпой деятельности различные функциональные системы определяют необходимую для нормальной жизнедеятельности устойчивость метаболических процессов и их уравновешенность с внешней средой» [17]. Понятие «устойчивость физиологических функций» тесно связано с понятием «гомеостаз». Гомеостаз - это относительное динамическое постоянство состава и свойств внутренней среды, обеспечивающее устойчивость основных физиологических функций [17].

В отличие от физико-математических наук с их хорошо разработанными математическими методами, позволяющими со сколь угодно большой точностью оценивать устойчивость систем, в биомедицине такой математический аппарат еще не создан и оценка устойчивости биомедицинских систем осуществляется экспериментально с помощью методов биомоделировапия.. Для этой цели используются различные виды моделей [5,12,13]: животпое- биомодель - лабораторное животное, используемое в эксперименте для изучения закономерностей протекания физиологических процессов; экспериментальная биомодель - создаваемая экспериментально модель того или иного состояния, в том числе патологического (болезнь), частично воспроизводящего функционирование прототипа; генетически обусловленная биомодель - специальные линии животных, имеющие врожденные изменения или патологию, характерную для заболеваний человека; математическая модель - абстрактов воплощение нашего представления о системе или о процессе, представленная виде математических символов, формул, уравнений; компьютерная модель - математическая модель, записанная на каком-либо языке программирования и реализованная в виде программы для ЭВМ.

Примерами использования животных и экспериментальных биомоделей для оценки устойчивости организма к стрессорным воздействиям являются различные экспериментальные модели стресса у животных (крысы, кролики, собаки и др.). Это различные виды иммобилизации, погружение животных в холодную воду, электрическое раздражение отрицательных эмоциогенных ядер гипоталамуса и другие. Оценка стресс-устойчивости и разделение животных по поведенческим критериям на группы «стресс- устойчивых» и «стресс-иредрасположенных» осуществляется с помощью показателя «индекс активности» в тесте «открытое поле», рассчитываемого по таким параметрам, как латентные периоды первого движения и выхода в центр, периферические и центральные амбуляции, число исследованных объектов, время грумминга, уринация и дефекация [9]. Устойчивость к стрессорным воздействиям сердеч- но-сосудисгых функций сначала оценивали по ЧСС, виду зубцов ЭКГ-сигнала и появлению различных аритмий. Позднее Макарычевым В.А. и соавт. [10] был предложен количественный критерий, позволяющий оценивать электрическую стабильность сердца по порогам возникновения фибрилляции желудочков (ПФЖ). Чем выше ПФЖ, тем выше электрическая стабильность сердца. Помимо ПФЖ, для оценки электрической стабильности сердца используются и другие критерии [19]. Это ULV (upper limit to the vulnerability) - верхний предел уязвимости миокарда к ФЖ (порог уязвимости) и DF - порог дефибрилляции. Чем выше ULV и DF, тем ниже электрическая стабильность сердца.

Широкое распространение в биомедицинских исследованиях получили методы оценки устойчивости различных функциональных систем организма, основанные на биоинформационном анализе. Так, в работах [6-8] устойчивость протекания патологического процесса при хроническом вирусном поражении печени при оценивалась с помощью информационной энтропии, а в работе [16] с позиций теории «равновесных» и «неравновесных» систем были рассмотрены патогенетические взаимосвязи между системой гомеостаза и процессами свободно-радикального окисления при введении в организм цитостатиков.

Примерами использования генетически обусловленных биомоделей являются работы по изучению устойчивости животных разных генетических линий к стрессорным нагрузкам. Так, работе [2] авторы сопоставляли устойчивость сердца к стрессорным повреждениям с характером пейровегетативной регуляции сердечно-сосудистой системы у крыс линий Август и Вистар. Стрессорпую нагрузку вызывали погружением крыс в холодную воду на 30 мин. Устойчивость сердца к стрессорным повреждениям оценивали по нарушению сократительной функции изолированного сердца и активности ферментов антиоксидантной защиты. Результаты исследований показали, что у крыс Август устойчивость сердца к стрессорным повреждениям выше, чем у крыс Вистар, несмотря на пониженную лабильность вегетативной нервной системы.

Широкое внедрение математических и компьютерных методов в биомедицинские исследования открывает новые возможности для разработки математических методов оценки устойчивости физиологических функций. Эти методы подразделяются на следующие виды:

  • • аналитические методы (если модель записана в виде дифференциальных уравнений);
  • • графические методы (лестничные диаграммы, диаграммы Пуанкаре);
  • • методы компьютерного моделирования.

Детальное изложение математических методов оценки

устойчивости биологических систем можно найти литературе [14,15], а практическое применение этих методов для оценки влияния сгрессорных натрузок на устойчивость кардиодинамики - в работах [11,12,20]. Авторами была разработана математическая модель, описывающая различные режимы функционирования кардиодинамики в условиях постепенного возрастания сгрессорной нагрузки. Модель сформулирована в виде реккурентных уравнений, выражающих зависимости величин последующей задержки атриовентрикулярного (АВ) проведения (Zn+i)or предыдущей (Zn) и последующего RR интервала (RR n+i) от предыдущего (RR п):

где Т - длительность интервала между возбуждениями синоатриального (СА) узла; Z - величина задержки в СА или АВ узле; г = r(abs) - абсолютный рефрактерный период СА или АВ узла соответственно; Z(min) - минимальное значение СА или АВ задержки; К - постоянная, характеризующая крутизну функции реституции Z( t).

Уравнения (1) и (2) позволяют по известным входным

воздействиям fi(t), f2(t),......fk(t), определяющим

длительность интервала Т между возбуждениями синоатриального (СА) узла, известным функциям задержек ZcA(t)=ZcA(min)+KcA/t и ZAB(t)=ZAB(min)+KAB/t, а также заданным значениям констант Кса, Кав, ZcA(min), ZAB(min), гса , гав определить временной ряд кард пойнтер валов RR[i], i=l, 2,... N. где N - длина ряда. При Zn>T-r имеет место выпадение импульса. На основании сформулированных уравнений авторы провели графическое исследование устойчивости различных режимов кардиодинамики методом лестничных диаграмм. Предполагалось, что стрессорная нагрузка возрастает пропорционально частоте нервной импульсации, поступающей на вход СА узла. Это предположение основано на известных из физиологии фактах о том, что при стрессорных нагрузках имеет место чрезмерная активация симпатических нервов, приводящая к возрастанию частоты нервной импульсации, поступающей на синоатриальный узел.

Различные режимы хаотической динамики сердечного ритма соответствующие различным случаям расположения функции задержек относительно биссектрисы координатного угла

Рис. Различные режимы хаотической динамики сердечного ритма соответствующие различным случаям расположения функции задержек относительно биссектрисы координатного угла.

А. Устойчивый (линейный) режим: функция Zn*i = К / (Т - Zn) проходит ниже биссектрисы координатного угла, пересекая ее в двух точках. Нижняя точка пересечения - устойчивый аттрактор.

Б. Неустойчивый (хаотический) режим: функция Z.,*i = К / (Т - Zn) проходит выше биссектрисы координатного угла, не имея с ней точек пересечения. При любом начальном значении задержки Zo, все последующие значения задержек Zi Z2 Zj....Zk образуют монотонно возрастающую последовательность, которая, прерывается выпадением очередного (Zk+i) импульса.

В. Локально неустойчивый аттрактор. Кривая задержек касается биссектрисы. В этом случае при небольших значениях начальной

задержки Zo последовательность Zi Z2 Zo........Z. стремится к точке

касания - локально неустойчивому аттрактору

На рис. показано 3 различных случая расположения функции Zn+i (Zn) относительно биссектрисы координатного угла, отвечающие различным состояниям устойчивости кардиоритма. Устойчивый (линейный) режим (рис. А) имеет место, если функция Z n+i=K/(T-Zn) проходит ниже биссектрисы координатного угла, пересекая ее в двух точках. В этом случае при любом значении начальной задержки Zo последующие задержки Zi,Z2,Z3... образуют монотонно убывающую последовательность, стремящуюся к одному устойчивому аттрактору, находящемуся в нижней точке пересечения функций. Эта точка (Zycr) определяет режим устойчивого равновесия хаотической динамики сердечного ритма. Неустойчивый (хаотический) режим (рис. Б) имеет место в том случае, когда кривая задержек не пересекает и не касается биссектрисы. В этом случае, как это можно видеть из рисунка, при любом начальном значении задержки Zo, все последующие значения задержек образуют монотонно возрастающую последовательность, которая, при некотором критическом значении задержки прерывается выпадением импульса. Этот режим - нелинейный, характеризуется отсутствием одного устойчивого аттрактора, большой изменчивостью и нерегулярностью кардиодинамики. Рис. В - локально неустойчивый аттрактор. Кривая задержек касается биссектрисы. В этом случае при небольших значениях начальной задержки Zo последовательность Zi,Z2,Z3,...,Zk стремится к точке касания - локально неустойчивому аттрактору.

Результаты дальнейших исследований показали, что постепенное возрастание величины стрессорной нагрузки сопровождается не только количественными, но и качественными изменениями амплитудно-временной упорядоченности сердечного ритма. Различным диапазонам стрессорных воздействий соответствуют различные режимы функционирования кардиодинамики: линейный режим, режим «хаос 1-й степени» и режим «хаос 2-й степени». Результаты исследований устойчивости различных режимов кардиодинамики, выполненные методом компьютерного моделирования, показали, что наибольшей устойчивостью отличается линейный режим. Для этого режима малые погрешности в значениях начальных условий не способны резко изменить исходную динамику RR интервалов. Оба нелинейных режима кардиодинамики являются неустойчивыми, причем степень неустойчивости режима «хаос 2-й степени» более высокая по сравнению с режимом режим «хаос 1-й степени». Результаты вычислительных экспериментов подтверждают экспериментальные данные, свидетельствующие о наличии взаимосвязи между показателями степени упорядоченности сердечного ритма и показателями электрической стабильности сердца.

Понимание необходимости математического обобщения большого числа разрозненных экспериментальных данных, накопленных в физиологической науке, и построения основ теоретической физиологии началось в середине прошлого века. Начало развитию теоретической физиологии положили основные идеи П.К. Анохина - теория функциональных систем и системный подход к исследованию физиологических функций. Ученые разных специальностей пришли к убеждению, что системный подход - это «единственный путь соединить в одно целое куски нашего разобщенного мира и достичь упорядоченности вместо хаоса» [4]. Физиология - это наука, которая на основе частных процессов и механизмов строит динамику работы целого организма [17]. Важным направлением теоретической физиологии является разработка методов оценки устойчивости физиологических функций. Основой тому являются положения общей теории устойчивости сложных систем произвольной природы: биологических, социальных, технических и других. В настоящей работе на конкретных примерах устойчивости сердечно-сосудистой системы изложена лишь часть этих методов. Разработка точных количественных методов и критериев оценки устойчивости других функциональных систем организма - предмет дальнейших совместных исследований математиков, физиологов, врачей, инженеров.

Литература

  • 1. Артюхов В.В. Общая теория систем. Самоорганизация. Устойчивость. Разнообразие. Кризисы. М.: Либроком, 2010. 224 с.
  • 2. Белкина Л.М., Попкова Е.В., Лакомкин В.Л., Кириллина Е.Н., Жукова А.Г., Сазонтова Т.Г., Усачева М.А., Ка- пелько В.И. Вариабельность параметров гемодинамики и устойчивость к стрессорпым повреждениям у крыс разных линий // Росс, физиол. журнал им. И.М. Сеченова. 2006. Т. 92. №2. С. 221-31.
  • 3. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. М.: Физматлит, 2010. 400 с.
  • 4. Гиг Дж. В. Прикладная общая теория систем. М.: Мир, 1981. 733 с.
  • 5. Каркищенко Н.Н. Основы биомоделирования. М.: Межакадемическое издательство ВПК, 2005. 608 с.
  • 6. Исаева Н.М., Савин Е.И., Субботина Т.И., Яшин А.А. Зависимость информационной энтропии от факторов, определяющих течение патологического процесса при хроническом вирусном поражении печени // Междун. журнал прикладных и фундаментальных исследований. 2013. 4.3. С.464-6.
  • 7. Исаева Н.М., Савин Е.И., Субботина Т.И., Яшин А.А. биоинформационный анализ тяжести морфологических изменений при хроническом поражении печени // Междун. журнал прикладных и фундаментальных исследований. 2013. 4.2. С. 249-50.
  • 8. Исаева Н.М., Субботина Т.И., Хадарцев А.А., Яшин А.А. Код Фибоначчи и «золотое сечение» в патофизиологии и экспериментальной магнитобиологии. Выпуск 4. Москва- Тула-Тверь: ООО «Издательство «Триада», 2007.136 с.
  • 9. Коплик Е.В., Горбунова А.В., Салиева Р.М. Тест «открытое поле» как прогностический критерий устойчивости к эмоциональному стрессу у крыс линии Вистар // Ж. ВИД. 1995. №4. С. 775-81.
  • 10. Макарычев В.А., Каштанов С.И., Старинский Ю.Г., Ульянинский Л.С. Изменения порогов возникновения желудочковых аритмий при раздражении отрицательных эмоциогенных центров гипоталамуса // Кардиология. 1979. N7. С. 98-101.
  • 11. Мезенцева Л.В. Анализ устойчивости сердечного ритма к стрессорным нагрузкам методом математического моделирования // Росс.Физиол.Ж.. им. И.М.Сечепова. 2010. Т.96. №2. С. 106-14.
  • 12. Мезенцева Л.В., Перцов С.С. Математическое моделирование в биомедицине // Вестник новых медицинских технологий. 2013. №1. С. 11-4.
  • 13. Еськов В.М., Хадарцев А.А., Гудков В.М., Гудкова С.А., Сологуб Л.А. Философско-биофизическая интерпретация жизни в рамках третьей парадигмы // Вестник новых медицинских технологий. 2012. Т.19. №1. С. 38-41.
  • 14. Еськов В.М., Филатова О.Е., Фудин Н.А., Хадарцев А.А. Новые методы изучения интервалов устойчивости биологических динамических систем в рамках компар- тментно-кластерного подхода // Вестник новых медицинских технологий. 2004. Т. 11. №3. С. 5-6
  • 15. Ризниченко Г.Ю. Лекции по математическим моделям в биологии. М.: Изд. РХД, 2002. 560 с.
  • 16. Субботина Т.И., Савин Е.И., Исаева Н.М. Распространение законов «золотого сечения» и «золотого вурфа» на патогенетические взаимосвязи между системой гомеостаза и процессами свободно-радикального окисления при введении в организм цитостатиков // Междун. журнал прикладных и фундаментальных исследований. 2013. №3.

С. 155-6.

  • 17. Судаков К.В. Физиология функциональных систем. Иркутск: Изд-во Ирк. Ун-та, 1997. 516 с.
  • 18. Keener J., Sneyd J. Mathematical physiology. Springer, 2001. 766 p.
  • 19. Malkin R.A., Sousa J.J., Ideker R.E. The ventricular defibrillation and upper limit of vulnerability dose-response curves//J. Cardiovasc. Electro physiol. 1997. V.8. N8. P.895-903.
  • 20. Mezentseva L.V. Analysis of the Nonlinear Heart Rate Dynamics by Two-Contour Mathematical Model // Biophysics. 2011. V.56. №3. P. 510-5.
 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>