Корреляционный и регрессионный анализ данных

Построение поля корреляции

Для экспериментального изучения зависимостей между случайными величинами х и у производят некоторое количество независимых опытов. Результат i-го опыта дает пару значений (хг, уг), i = 1, 2,..., п.

Величины, характеризующие различные свойства объектов, могут быть независимыми или взаимосвязанными. Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связь.

При функциональной зависимости двух величин значению одной -xh обязательно соответствует одно или несколько точно определенных значений другой величины {. Достаточно часто функциональная связь проявляется в физике, химии. В реальных ситуациях существует бесконечно большое количество свойств самого объекта и внешней среды, влияющих друг на друга, поэтому такого рода связи не существуют, иначе говоря, функциональные связи являются математическими абстракциями.

Воздействие общих факторов, наличие объективных закономерностей в поведении объектов приводят лишь к проявлению статистической зависимости. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения других (другой), и эти другие величины принимают некоторые значения с определенными вероятностями. Функциональную зависимость в таком случае следует считать частным случаем статистической: значению одного фактора соответствуют значения других факторов с вероятностью, равной единице. Более важным частным случаем статистической зависимости является корреляционная зависимость, характеризующая взаимосвязь значений одних случайных величин со средним значением других, хотя в каждом отдельном случае любая взаимосвязанная величина может принимать различные значения.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение - сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто связь - relation, а «как бы связь» - corelation).

Корреляционные зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается - увеличение массы внесенных удобрений ведет к росту урожайности.

Простейшим приемом выявления связи между изучаемыми признаками является построение корреляционной таблицы; ее наглядным изображением служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладываются значения jq, по оси ординат ух. По расположению точек, их концентрации в определенном направлении можно качественно судить о наличии связи.

Поле корреляции случайной величины

Рис. 7.3. Поле корреляции случайной величины

Положительная корреляция между случайными величинами, близкая к параболической функциональной, представлена на рис. 6.1, а. На рис. 6.1, б приведен пример слабой отрицательной корреляции, а на рис. 6.1, в - пример практически некоррелированных случайных величин. Корреляция высокая, если на графике зависимость «можно представить» прямой линией (с положительным или отрицательным углом наклона).

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >