Полная версия

Главная arrow Психология arrow Математические методы в психологии

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Дисперсионный анализ

Понятие и основная идея дисперсионного анализа

Дисперсионный анализ - это статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования аналогичного эксперимента. Этот метод позволяет сравнивать несколько (более двух) выборок по признаку, измеренному в метрической шкале. Общепринятое сокращенное обозначение дисперсионного анализа ANOVA (от англ. ANalysis Of VAriance).

Создателем дисперсионного анализа является выдающийся английский исследователь Рональд Фишер, заложивший основы современной статистики.

Основной целью данного метода является исследование значимости различия между средними. Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (то есть анализируем) выборочные дисперсии. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ.

Переменные, значения которых определяются с помощью измерений в ходе эксперимента (например, балл, набранный при тестировании), называются зависимыми переменными. Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы или классифицировать), называются факторами или независимыми переменными.

По числу факторов, влияние которых исследуется, различают однофакторный и многофакторный дисперсионный анализ. Мы будем рассматривать однофакторный дисперсионный анализ.

Основные допущения дисперсионного анализа:

  • 1) распределение зависимой переменной для каждой группы фактора соответствует нормальному закону (нарушение данного предположения, как показали многочисленные исследования, не оказывает существенного влияния на результаты дисперсионного анализа);
  • 2) дисперсии выборок, соответствующих разным градациям фактора, равны между собой (данное допущение имеет существенное значение для результатов дисперсионного анализа в том случае, если сравниваемые выборки отличаются по численности);
  • 3) выборки, соответствующие градациям фактора, должны быть независимы (выполнение данного допущения является обязательным в любом случае). Независимыми называются выборки, в которых объекты исследования набирались независимо друг от друга, то есть вероятность отбора любого испытуемого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки (типичный пример зависимых выборок - измерение свойства на одной и той же выборке до и после проведения методики. В этом случае выборки зависимы, поскольку состоят из одних и тех же испытуемых. Еще один пример зависимых выборок: мужья - одна выборка, их жены - другая выборка).

Алгоритм выполнения дисперсионного анализа:

  • 1. Выдвигаем гипотезу Н0 - нет влияния группирующего фактора на результат.
  • 2. Находим межгрупповую (факторную) и внутригрупповую (оста- точную) дисперсии фтт и Docm).
  • 3. Рассчитываем наблюдаемое значение критерия Фишера - Снедекора:

4. По таблице критических точек распределения Фишера - Снедекора[1] или с помощью стандартной функции MS Excel «ЕРАСПОБР» находим

V

где: а - заданный уровень значимости, кх и к2 - число степеней свободы факторной и остаточной дисперсии соответственно.

5. Если FHa6ji > FKp, то гипотеза Я0 отвергается. Это значит, что есть влияние группирующего фактора на результат.

Если FHa6jl < FKp, то гипотеза #0 принимается. Это значит, что нет влияния группирующего фактора на результат.

Таким образом, дисперсионный анализ призван установить, оказывает ли существенное влияние некоторый фактор F, который имеет р уровней: Fx, F2,..., Fp, на изучаемую величину.

  • [1] Гмурман В.Е. Теория вероятностей и математическая статистика. С. 467.
 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>