ВЛИЯНИЕ ЛОГИСТИКИ НА КОРРЕКТИРОВКУ ПРОИЗВОДСТВЕННОЙ ПРОГРАММЫ

В процессе производства при использовании линейных транспортно-технологических маршрутов часто создаются ситуации, когда заданная производственная программа не может быть выполнена в установленные сроки из-за возникновения перегрузок на отдельных станках при том, что общие объемы работ не превышают совокупной мощности (производственного ресурса) имеющихся технических и технологических средств.

Многовариантные транспортно-технологические маршруты помогают скорректировать производственную программу за счет перевода производственных операций или транспортно- перемещающих работ с одного оборудования или транспортно- перемещающего средства на другое.

Принципиально задача корректировки производственной программы с логистических позиций должна решаться на трех уровнях:

  • 1. На уровне долгосрочного прогнозирования (квартального, месячного).
  • 2. На уровне среднесрочного планирования (недельного, суточного).
  • 3. На уровне оперативного управления (в течение смены, часа).

Для оценки выполнимости производственной программы на уровне оперативного управления и частично среднесрочного (суточного) планирования необходимо решить стандартную задачу оперативно-календарного планирования, т. е. определить пооперационный часовой, сменный или суточный план прохождения заказов через производственное оборудование и инфраструктуру логистики. На данных уровнях корректировка производится не для всей производственной программы, а только для текущего портфеля полностью укомплектованных работ.

Целью корректировки является выравнивание текущей загрузки различных технических и транспортных средств, а также технологического оборудования с помощью логистических подходов. На этих уровнях использования различных вариантов управления потоковыми процессами производственнологистические технологии выступают как эффективное средство обеспечения ритмичного выпуска конечной и промежуточной продукции.

К сожалению, этот подход неприемлем при долгосрочном прогнозировании и недельном (среднесрочном) планировании. Причин несколько.

Во-первых, он очень громоздок и поэтому исключает возможность формирования производственной программы в диалоговом режиме.

Во-вторых, он себя не оправдывает в том смысле, что дает решение задачи с гораздо большей точностью, чем представляется возможным реализовать на практике.

В связи с этим на уровне разработки квартальных, месячных и недельных производственных программ целесообразно использовать более упрощенные, чисто объемные экспресс-методы. Корректировка производственной программы на этих уровнях предназначена для оценки только основных количественных параметров программы. Выбор на этих уровнях определенного варианта производственно-логистической технологии еще не означает, что именно этот вариант будет использован в оперативном управлении.

Задачу степени корректировки (оценки сбалансированности) квартальной, месячной и недельной производственной программы удобно формулировать как задачу о максимальном потоке некоторого специального вида в логистической сети.

Допустим, что совокупная трудоемкость изготовления Р- го заказа (Тр) одинакова для всех линейных реализаций многовариантного транспортно-технологического маршрута. В качестве примера рассмотрим два внутренних заказа, маршруты выполнения которых показаны на рис. 9.8.

Чтобы построить предлагаемые сети, необходимо ввести четыре дополнительные вершины ТрТ2, Ср Ф1 по числу используемых моделей оборудования.

Соединим последние ориентированными дугами с соответствующими вершинами транспортно-технологических маршрутов. Помимо этого введем общий источник А (вершину) и соединим его с входными вершинами каждого заказа и общий сток В (вершину), соединив его с вершинами ТрТ2, Ср Фг В итоге получим сеть, представленную на рис. 9.9, в которой выходные вершины и вершины, соответствующие выносным операциям в этой сети, опущены как ненужные.

Таким образом, в построенной сети имеется четыре типа вершин:

  • 1. Источник и сток (вершины А и В).
  • 2. Вершины, соответствующие операциям запуска в производство. Данные вершины обозначим через Д = Wpo, где Р — номер заказа.
  • 3. Вершины, соответствующие технологическим операциям. Обозначим данные вершины как Wp., где г — определенный условный номер управляющей программы в многовариантном маршруте выполнения Р-го заказа.
  • 4. Вершины, соответствующие моделям оборудования. Обозначим их как Sk, где к — номер модели оборудования.

Транспортно-технологические маршруты обработки полуфабрикатов (деталей) показаны на рис. 9.8.

Варианты транспортно-технологических маршрутов обработки деталей (полуфабрикатов) для задачи корректировки производственной программы

Рис. 9.8. Варианты транспортно-технологических маршрутов обработки деталей (полуфабрикатов) для задачи корректировки производственной программы

Для каждой дуги определим q как проходящую через нее трудоемкость и пропускную способность V как максимально допустимую величину потока. В нашем примере пропускные способности дуг будут равны:

где Ек — совокупный нормативный фонд времени работы оборудования к-й модели

где Вк — количество единиц оборудования к-й модели;

Сеть материальных потоков, используемых при корректировке производственной программы

Рис. 9.9. Сеть материальных потоков, используемых при корректировке производственной программы

Фэ — эффективный фонд времени работы одной единицы оборудования;

КщТ — нормативный коэффициент использования;

где ФПАР — совокупное время, затраченное на обработку всех партий деталей (полуфабрикатов) за определенный период;

Фпр — совокупное время простоев оборудования по организационным причинам;

Фрем — совокупное время, затраченное на восстановление работоспособности при отказах и сбоях оборудования.

Пропускные способности дуг (Dp, Wpi); (Wpi, Sk) для всех существующих дуг в представленном примере принимаются неограниченными.

Введем коэффициенты Lp.fr. При этом Lp.fr = 1, если существует дуга (Wpi, Sk), и Lp.fr = 0, если дуги не существует.

Когда производственная программа перегружена, то по причине неограниченной способности дуг (Sk, В) отдельные заказы могут быть не выполнены или выполнены лишь частично. При этом является обязательным, чтобы выполняемая часть заказа была обработана по всем операциям. В связи с этим: для дуги (A, Dp) поток q равен трудоемкости выполняемой части Р-го заказа; для дуги (Wpf, Wp.) — остаточной трудоемкости после прохождения вершины Wpi) для дуги (Wpi, Sk) — трудоемкости операции Wpi по выполняемой части Р-го заказа; для дуги (Sk, В) — совокупной трудоемкости работ, выполняемых на оборудовании к-й модели.

Предположение о постоянной трудоемкости (Тр) для любого линейного маршрута обработки Р-го заказа означает, что остаточная трудоемкость выполнения этого заказа после прохождения некоторой вершины Wpi не зависит от дальнейшего маршрута. Отсюда следует, что каждой вершине Wpi может быть приписана величина Fpi — доля остаточной трудоемкости перед выполнением этой операции, принудительно направляемая из вершины Wpi по дуге (Wpi, Sk), если через нее пройдет маршрут обработки.

Материальный поток по дуге (Wpp Sk) равен:

где Мр — общее количество управляющих программ в многовариантном транспортно-технологическом маршруте выполнения Р-го заказа.

Эта особенность рассматриваемой сети делает невозможным применение методов, основанных на теореме Форда-Фал- керсона, для нахождения величины максимального потока.

По теореме Кирхгофа о равенстве входного и выходного потоков в каждой вершине получаем

где N — число заказов в производственной программе;

L — число моделей оборудования (станков).

Потоки между несмежными вершинами полагаются равными

0. На величину потока накладываются следующие ограничения:

За критерий оптимальности можно принять максимизацию трудоемкости, реализуемой производственной программой:

Соотношения приведенных формул определяют линейную программу корректировки. В том случае, когда в результате решения задачи окажется, что , производственная программа перегружена. Если же для какой-либо действующей модели оборудования q (Sk, В) < Ек, то потребуется дозагрузка этого оборудования.

В диалоговом режиме производственную программу лучше формировать путем последовательного включения в ее состав новых комплектов деталей (полуфабрикатов) с промежуточными оценками корректировки. Каждое новое включение осуществляется в порядке уменьшения приоритета.

Размерность данной задачи может быть уменьшена путем применения следующих правил:

  • 1. Если две последовательные управляющие программы выполняются на оборудовании одной и той же модели и после первой из них отсутствует ветвление, то соответствующие вершины объединяются в одну, имеющую совокупную трудоемкость.
  • 2. Могут исключаться ветвления маршрутов, которые связаны только с изменением порядка выполнения производственных операций, так как они не дают дополнительных степеней свободы при корректировке программы. При оперативном управлении эти виды ветвлений служат для выравнивания текущей загрузки различных групп оборудования.
  • 3. Из производственной программы “снимаются” заказы, которые имеют только линейный маршрут выполнения, но одновременно должны уменьшаться ресурсы оборудования Ек.
  • 4. Заказы, имеющие аналогичные многовариантные маршруты, объединяются в один заказ с соответствующим увеличением суммарной трудоемкости в трудоемкости выполнения отдельных производственных операций и перерасчетом коэффициентов Fp.

Так как целью корректировки на стадии долгосрочного прогнозирования является оценка выполнимости заданной программы, на этом этапе при определении нормативных фондов времени работы оборудования Ек рекомендуется предусматривать некоторый резерв для выполнения срочных заказов, открываемых в течение месяца.

Если ожидается перегрузка программы по всем технологически взаимозаменяемым моделям оборудования, то часть заказов должна быть передана на другие участки. В случаях, когда независимо от проведенной корректировки перегрузка возникает на отдельных моделях оборудования, рекомендуется заранее разработать дополнительные варианты технологии и подготовить разрешение на использование обходных вариантов.

Контрольные вопросы

  • 1. На каких уровнях решается задача корректировки производственной программы с логистических позиций?
  • 2. В чем заключается суть задачи оперативно-календарного планирования?
  • 3. Какова цель корректировки производственной программы?
  • 4. Как осуществляется корректировка производственной программы на уровне долгосрочного прогнозирования и среднесрочного планирования?
  • 5. Как осуществляется корректировка производственной программы на стадии оперативного управления?
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ     След >