Полная версия

Главная arrow Туризм arrow Основы функционирования систем сервиса

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Пуассоновский поток

Пусть в предприятие сервиса через случайные интервалы времени обращаются клиенты, при этом поток заказов однороден (однотипные заказы) и в единицу времени обращается X клиентов. Вероятность прихода клиента не зависит от числа уже обратившихся клиентов, вероятность того, что одновременно обратятся сразу два клиента, мала. Кроме того, число обратившихся клиентов зависит от рассматриваемого интервала времени и не зависит от начала рассмотрения.

Тогда модель математически можно описать следующим образом. Пусть рк(х) означает вероятность прибытия к клиентов в интервале времени длительностью х, p0(t) — вероятность того, что за время (0, /) не будет ни одного клиента, что, согласно (14.2), соответствует вероятности того, что интервал времени до прибытия первого клиента больше, чем t.

Независимые интервалы времени прибытия клиентов

Рис. 14.2. Независимые интервалы времени прибытия клиентов

1. Если ijH т2 два неперекрывающихся интервала (рис. 14.2), то предположение о независимости имеет вид:

2. Среднее значение времени между прибытиями клиентов равно

3. Вероятность того, что клиент не придет в течение интервала времени нулевой длительности,

4. Вероятность того, что клиент не придет в течение интервала времени бесконечной длительности,

Такой поток заказов считается простейшим. Поток заказов называется простейшим, или пуассоновским, если он обладает тремя свойствами: стационарен, ординарен и без последействия.

Свойство стационарности характеризуется тем, что вероятность появления к событий потока на любом интервале времени т зависит только от числа к и длительности т.

Свойство ординарности характеризуется тем, что вероятность появления более одного события за малый интервал времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Свойство отсутствия последействия характеризуется тем, что вероятность появления к событий потока на любом интервале времени т не зависит от того, появились или не появились события в моменты, предшествующие началу рассматриваемого интервала.

Пуассоновский поток играет фундаментальную роль в теории систем массового обслуживания, как нормальный процесс в статистике. Большинство других процессов, используемых в системах массового обслуживания, получаются путем модификации пуассоновского.

Образование суммарного потока

Рис. 14.3. Образование суммарного потока

Часто на практике трудно установить, обладает ли поток перечисленными выше свойствами. В частности, установлено, что если поток представляет собой сумму (суперпозицию) очень большого числа независимых стационарных потоков, влияние каждого из которых на весь суммарный поток ничтожно мало, то этот суммарный поток при условии его ординарности близок к простейшему. На рис. 14.3 показан пример образования суммарного потока. Указанное свойство сродни центральной предельной теореме нормального распределения.

Пуассоновский процесс

Рис. 14.4. Пуассоновский процесс

Случайный процесс N(t), описывающий такой поток и соответствующий числу прибывших клиентов, является дискретным и в случайные моменты времени может принимать только целочисленные значения. Процесс нестационарный, так как может только возрастать. Реализация процесса показана на рис. 14.4.

В течение малого интервала времени процесс может остаться в том же состоянии или изменить его (увеличить число клиентов на единицу). Другими словами, процесс из состояния Sjможет перейти только в состояние $ ,. Пусть вероятность изменения состояния в малом интервале времени dx равна A,dx+o(dx), где А>0. Вероятность сохранения прежнего состояния l-^dx + o(dx). Так как поток ординарен, вероятность смены состояния более одного раза в интервале (/, t+dx) есть бесконечно малая величина o(dx) высшего порядка по сравнению с dx.

Обозначим вероятность того, что N(t) = n, как рп(х), где x — t-t0 — интересующий нас интервал времени, т.е. процесс за время х совершил п скачков. Пусть рп (х) зависит только от х и не зависит от начального момента t0, от которого отсчитывается х. Поэтому, несмотря на то что процесс нестационарный, случайное число появления запросов на сервис N(t) = п за интервал времени х = t—tQ является постоянной (стационарной) величиной.

Предположим также, что N(t) не зависит от числа реализаций события, произошедших в любые интервалы времени, предшествующие т, т.е. процесс обладает свойством отсутствия последействия. Вычислим вероятность pn(x + dx) того, что в интервале (x+dx) произойдет п событий.

Очевидно, для того чтобы в интервале (х+dx) произошло п событий, должны совершиться два взаимоисключающих события:

О произошло п событий в интервале х и 0 событий в интервале dx. Вероятность этого в силу независимости равна рп (т)(1 — Xdx);

О произошло п — 1 событий в интервале т и 1 событие в интервале dx. Вероятность этого равна р {(x)A.dx.

Таким образом,

Перенесем в левую часть рп (х) и поделим на dx:

Перейдя к пределу при dx —? 0, получим дифференциальное уравнение:

Рассчитаем вероятность /?0(х)того, что на интервале (x+dx) событие не наступит ни разу. Ясно, что для этого событие не должно наступить в интервале х и в интервале dx. Вероятность этого равна /?0(х)(1-Ых).

Таким образом,

Соответствующее дифференциальное уравнение имеет вид:

Объединив (14.12) и (14.13) и положив начало рассмотрения процесса с момента^ = 0, а х = t, получим систему дифференциальных уравнений:

Зададимся следующими начальными условиями:

которые означают, что в начальный момент t0 событие не произошло.

Как видно, уравнения (14.14) и (14.15) являются частным случаем уравнений Колмогорова—Чепмена в дифференциальной форме (13.11) для абсолютных вероятностей и описанный процесс является марковским.

Для нахождения общего решения системы удобно использо-

L

вать преобразование Лапласа. Пусть p{i)<$P{s). Применяя преобразование Лапласа к обеим частям уравнения (14.14) системы с учетом начальных условий (14.16), получаем

По теореме о начальном состоянии оригинала

По теореме о конечном состоянии оригинала

Полученные характеристики соответствуют рассматриваемой модели.

Обратное преобразование Лапласа (14.17) будет

Применяя преобразование Лапласа к обеим частям (14.15) с учетом начальных условий (14.16), получаем

откуда

Согласно (14.17) и (14.18),

Далее по индукции можно получить Рп (s) для любого п в виде

По таблице преобразований Лапласа

Используя (14.20), из (14.19) получаем распределение Пуассона

которое дает вероятность того, что в момент t > 0 система находится в состоянии N(f) = п или что за время [0, /] произойдет п изменений.

Независимые пуассоновские процессы Хт и Хх

Рис. 14.5. Независимые пуассоновские процессы Хт{ и Хх2

Таким образом, число событий внутри фиксированного интервала в пуассоновском потоке распределено по закону Пуассона. При этом число событий N(t{ ,t2) и N{t3,t4)на неперекрываю- щихся интервалахTt = t2 -1{и т2 = t4 -13, где t{ 2 3 4, независимы (рис. 14.5).

На рис. 14.6 показаны плотности вероятности прибытия 0,1,2, 3, 4 клиентов при поступлении их по пуассоновскому закону для интенсивностей X = 0,5 (рис. 14.6, а) и X = 1 (рис. 14.6, б). Как видно, с ростом интенсивности повышается вероятность прибытия клиентов в первые моменты времени.

Вероятность того, что за время t поступит не более п заказов, определяется функцией распределения Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4—р(3);5—р(4)

Рис. 14.6. Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4—р(3);5—р(4)

Согласно (11.41), производящая функция для распределения Пуассона (14.21) по дискретному значению п

(14.23)

Математическое ожидание числа прибывших клиентов, распределенных по Пуассону, в соответствии с (11.43)

Таким образом, среднее число событий N(t) в интервале / равно U.

Дисперсия, характеризующая рассеивание числа заказов в интервале /, согласно (11.44),

Как видно, дисперсия простейшего потока равна математическому ожиданию. Данное свойство может служить критерием соответствия потока заказов простейшему.

Формула Пуассона (14.21) отражает все свойства простейшего потока. В самом деле, из формулы видно, что вероятность появления п событий за время t при заданной интенсивности А, является функцией только /, что характеризует свойство стационарности. В формуле не используется информация о появлении событий до начала рассматриваемого промежутка, что характеризует свойство отсутствия последействия. Если и т2 два неперекрывающихся интервала времени, то свойство независимости имеет место, так как

Вероятность появления более одного события за малый интервал времени р (/) = (А,/)2/2!. Эта вероятность пренебрежимо мала

по сравнению с вероятностью наступления одного события, равной АЛ, что характеризует свойство ординарности потока.

Найдем далее для пуассоновского процесса распределение вероятностей интервалов между двумя последовательными событиями. Пусть случайная величина Тхарактеризует длину этих интервалов. Обозначим через F{x) функцию распределения этой случайной величины. По определению, F(x) — это вероятность того, что Т < х. Вероятность того, что в интервале времени [/0, /0 + т] не произошло событие, если оно произошло в момент t0, равна безусловной вероятности

т.е.

Следовательно, функция распределения длины интервала между двумя последовательными событиями имеет вид показательного закона:

Продифференцировав (14.25), получим соответствующую плотность вероятности интервала между двумя событиями:

С учетом (14.26) и (14.24) вероятность того, что заказ появится внутри интервала (x,T+dx), можно записать как

т.е. вероятность поступления заказа внутри интервала (x,T + dx) равна A,dx, не зависит от х и пропорциональна dx. Величина X называется параметром показательного закона. Поскольку X не зависит от длительности интервала х, экспоненциальное распределение не имеет памяти и не имеет возраста (см. рис. 10.7).

Таким образом, для простейшего потока с интенсивностью X случайная величина Т, представляющая интервал между соседними заказами (событиями), имеет экспоненциальное распределение с функцией распределения (14.25) и плотностью распределения (14.26). Если время между прибытиями клиентов имеет экспоненциальное распределение со средним значением Т, тогда случайная переменная N(t), представляющая число клиентов, прибывших в фиксированный интервал [0, t], имеет пуассоновское распределение с параметром Xt, где Х=/Т. В силу марковости процесса интервалы между событиями взаимно независимы. Отсюда процесс, у которого интервалы между событиями взаимно независимы и подчинены показательному закону, является пуассоновским процессом.

В соответствии с разностными уравнениями (14.11) можно изобразить граф пуассоновского процесса (рис. 14.7). Вершины графа обозначают состояния системы, которые для пуассоновского потока клиентов соответствуют числу поступивших клиентов. Над дугами показаны вероятности перехода.

Граф пуассоновского процесса

Рис. 14.7. Граф пуассоновского процесса

При большом промежутке времени вероятность перехода в соседнее состояние стремится к единице, а вероятность остаться в том же состоянии — к нулю и граф на рис. 14.7 преобразуется в граф на рис. 14.8. Над дугами графа показана интенсивность, с которой осуществляются переходы. Время нахождения процесса в состоянии случайно и распределено по экспоненциальному закону с математическим ожиданием /Х. В среднем через время 1Д система переходит в следующее состояние, что соответствует поступлению очередного клиента. Так как процесс ординарен, переход возможен только в соседние состояния. Передаточная функция дуги соответствует преобразованию Лапласа экспоненциального распределения (10.47).

Граф пуассоновского процесса при большом промежутке времени

Рис. 14.8. Граф пуассоновского процесса при большом промежутке времени

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>