Полная версия

Главная arrow Туризм arrow Основы функционирования систем сервиса

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

Типовые дискретные распределения случайных величин

Рассмотрим дискретные распределения, которые часто используются при моделировании систем сервиса.

Распределение Бернулли. Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача» с вероятностями р и q = 1 — р. Пусть случайная переменная X может принимать два значения с соответствующими вероятностями:

Функция распределения Бернулли имеет вид

Ее график показан на рис. 11.1.

Случайная величина с таким распределением равна числу успехов в одном испытании схемы Бернулли.

Производящая функция, согласно (11.1) и (11.15), вычисляется как Функция распределения Бернулли

Рис. 11.1. Функция распределения Бернулли

По формуле (11.6) найдем математическое ожидание распределения:

Вычислим вторую производную производящей функции по (11.17)

По (11.7) получим дисперсию распределения

Распределение Бернулли играет большую роль в теории массового сервиса, являясь моделью любого случайного эксперимента, исходы которого принадлежат двум взаимно исключающим классам.

Геометрическое распределение. Предположим, что события происходят в дискретные моменты времени независимо друг от друга. Вероятность того, что событие произойдет, равна р, а вероятность того, что оно не произойдет, q = 1-р, например пришедший клиент делает заказ.

Обозначим через рк вероятность того, что событие произойдет 1-й раз в момент к, т.е. к-й клиент сделал заказ, а предыдущие к— 1 клиентов нет. Тогда вероятность этого сложного события можно определить по теореме умножения вероятностей независимых событий

Вероятности событий при геометрическом распределении показаны на рис. 11.2.

Сумма вероятностей всех возможных событий

представляет собой геометрическую прогрессию, поэтому распределение и называется геометрическим. Так как (1 - р) < 1, то ряд (11.21) сходится к значению

Случайная величина Хс геометрическим распределением имеет смысл номера первого успешного испытания в схеме Бернулли.

Геометрическое распределение

Рис. 11.2. Геометрическое распределение

Определим вероятность того, что событие произойдет для Х>к

и функцию геометрического распределения

Вычислим производящую функцию геометрического распределения по (11.1) и (11.20)

математическое ожидание геометрического распределения по (11.6)

а дисперсию по (11.7)

Геометрическое распределение считается дискретной версией непрерывного экспоненциального распределения и также обладает рядом свойств, полезных для моделирования систем сервиса. В частности, как экспоненциальное распределение, геометрическое не имеет памяти:

т.е. если проведено / неуспешных опытов, тогда вероятность того, что для первого успеха необходимо провести еще j новых опытов, такая же, как вероятность того, что при новой серии испытаний для первого успеха необходимо провести ./'опытов. Другими словами, предыдущие опыты не оказывают эффекта на будущие опыты и опыты являются независимыми. Часто это соответствует действительности. Например, клиенты независимы и заказы делают случайным образом.

Рассмотрим пример системы, параметры функционирования которой подчиняются геометрическому распределению.

В распоряжении мастера имеется п однотипных запасных деталей. Каждая деталь с вероятностью q имеет дефект. При ремонте деталь устанавливается в устройство, которое проверяется на работоспособность. Если устройство не работает, то деталь заменяется на другую. Рассматривается случайная величина X — число деталей, которые будут проверены.

Вероятности числа проверенных деталей будут иметь значения, показанные в таблице:

*1

1

2

3

i

п

Pi

р

РЯ

РЯ2

ря'~х

я"-'

Здесь q = 1 - р.

Математическое ожидание числа проверенных деталей определяется как

Биномиальное распределение. Рассмотрим случайную величину

где Xj подчиняется распределению Бернулли с параметром р и случайные величины Xj независимы.

Значение случайной величины X будет равно числу появления единиц при п испытаниях, т.е. случайная величина с биномиальным распределением имеет смысл числа успехов в п независимых испытаниях.

Согласно (11.9), производящая функция суммы взаимно независимых случайных величин, каждая из которых имеет распределение Бернулли, равна произведению их производящих функций (11.17):

Раскладывая производящую функцию (11.26) в ряд, получим

В соответствии с определением производящей функции (11.1) вероятность того, что случайная величина Xпримет значение к:

где — биномиальные коэффициенты.

11оскольку & единиц на п местах можно расположить С* способами, то число выборок, содержащих к единиц, будет, очевидно, таким же.

Функция распределения для биномиального закона вычисляется по формуле

Распределение называется биномиальным в связи с тем, что вероятности по форме представляют собой члены разложения бинома:

Ясно, что суммарная вероятность всех возможных исходов равна 1:

Из (11.29) можно получить ряд полезных свойств биномиальных коэффициентов. Например, при р =1, q =1 получим

Если положить р =1, q = — 1 , то

При любом 1< к < п справедливы следующие соотношения:

Вероятности того, что в п испытаниях событие наступит: 1) менее &раз; 2) более к раз; 3) не менее &раз; 4) не более &раз, находят соответственно по формулам:

Используя (11.6), определим математическое ожидание биномиального распределения

а по (11.7) — дисперсию:

Рассмотрим несколько примеров систем, параметры функционирования которых описываются биномиальным распределением.

1. Партия из 10 продуктов содержит один нестандартный. Найдем вероятность того, что при случайной выборке 5 продуктов все они будут стандартными (событие А).

Число всех случайных выборок п — С,э0, а число выборок, благоприятствующих событию, есть п = С95. Таким образом, искомая вероятность равна

2. При въезде в новую квартиру в осветительную сеть было включено 2к новых электрических ламп. Каждая электрическая лампа в течение года перегорает с вероятностью р. Найдем вероятность того, что в течение года не менее половины первоначально включенных ламп придется заменить новыми (событие А):

3. Человек, принадлежащий к определенной группе потребителей, с вероятностью 0,2 предпочитает продукт 1, с вероятностью 0,3 — продукт 2, с вероятностью 0,4 — продукт 3, с вероятностью 0,1 — продукт 4. Выбрана наугад группа из 6 потребителей. Найдем вероятности следующих событий: А — в составе группы находятся не менее 4 потребителей, предпочитающих продукт 3; В— в составе группы находится хотя бы один потребитель, предпочитающий продукт 4.

Эти вероятности равны:

При больших/? вычисления вероятностей становятся громоздкими, поэтому используют предельные теоремы.

Локальная теорема Лапласа [34], согласно которой вероятность Рп (к) определяется формулой

где — функция Гаусса;

Интегральная теорема Лапласа используется для вычисления вероятности того, что в п независимых испытаниях событие наступит не менее к{ раз и не более к2 раз:

где

Рассмотрим примеры использования данных теорем.

1. Швейная мастерская производит пошив одежды по индивидуальному заказу, среди которой 90 % высшего качества. Найдем вероятность того, что среди 200 изделий будет высшего качества не меньше 160 и не больше 170.

Решение:

2. У страховой компании имеется 12 тыс. клиентов. Каждый из них, страхуясь от несчастного случая, вносит 10 тыс. руб. Вероятность несчастного случая р — 0,006, а выплата пострадавшему 1 млн руб. Найдем прибыль страховой компании, обеспечиваемую с вероятностью 0,995; иными словами, на какую прибыль может рассчитывать страховая компания при уровне риска 0,005.

Решение: Суммарный взнос всех клиентов 12 000-10 000 = 120 млн руб. Прибыль Якомпании зависит от числа к несчастных случаев и определяется равенством Я = 120 000-1000/: тыс. руб.

Следовательно, надо найти такое число Л/, чтобы вероятность события Р(к > М) не превосходила 0,005. Тогда с вероятностью 0,995 будет обеспечена прибыль Я =120000-10004/ тыс. руб.

Неравенство Р(к > М)<0,005 равнозначно Р(к<М)>0,995. Так как к > 0, то Р(0 <к < М)>0,995. Для оценки этой вероятности воспользуемся интегральной теоремой Лапласа при п— 12 000 и/?=0,006, #=0,994:

Так как*! < -8, то F(x]) = -0,5.

Таким образом, необходимо найти Л/, при котором

Находим — 72)/8,5 > 2,58. Следовательно, М>12 + 22 = 94.

Итак, с вероятностью 0,995 компания гарантирует прибыль

Часто требуется определить наивероятнейшее число к0. Вероятность наступления события с числом успехов к0 превышает или по крайней мере не меньше вероятности остальных возможных исходов испытаний. Наивероятнейшее число к0 определяют из двойного неравенства

3. Пусть имеется 25 образцов средств потребления. Вероятность того, что каждый из образцов будет приемлем для клиента, равна 0,7. Необходимо определить наиболее вероятное число образцов, которые окажутся приемлемыми для клиентов. По (11.39)

Отсюда к0 18.

Распределение Пуассона. Распределение Пуассона определяет вероятность того, что при очень большом числе испытаний п, в каждом из которых вероятность события р очень мала, событие наступит ровно к щз.

Пусть произведение пр = к; это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных п, остается неизменным. В этом случае распределение Пуассона может использоваться для аппроксимации биномиального распределения:

Так как для больших п

Производящая функция распределения Пуассона вычисляется по (11.1) как

где по формуле Маклорена

В соответствии со свойством коэффициентов производящей функции вероятность появления к успехов при среднем числе успехов X вычисляется как (11.40).

На рис. 11.3 показана плотность вероятности распределения Пуассона.

Производящую функцию распределения Пуассона можно также получить, воспользовавшись разложением в ряд производящей функции биномиального распределения для пр = Х при п -» оо и формулой Маклорена (11.42): Плотность вероятности распределения Пуассона Ясно, что сумма вероятностей всех возможных исходов равна 1

Рис. 11.3. Плотность вероятности распределения Пуассона Ясно, что сумма вероятностей всех возможных исходов равна 1:

Определим математическое ожидание по (11.6)

а дисперсию по (11.7)

Рассмотрим пример системы с пуассоновским распределением параметров.

Предприятие отправило в магазин 500 изделий. Вероятность повреждения изделия в пути равна 0,002. Найти вероятности того, что в пути будет повреждено изделий: ровно 3 (событие Я); менее 3 (событие В) более 3 (событие Q; хотя бы одно (событие D).

Число п = 500 велико, вероятность р = 0,002 мала, рассматриваемые события (повреждение изделий) независимы, поэтому можно использовать формулу Пуассона (11.40).

При X = пр = 500 0,002=1 получим:

Распределение Пуассона обладает рядом полезных для моделирования систем сервиса свойств.

1. Сумма случайных переменных Х= Х{ + Х2 с пуассоновским распределением также распределена по закону Пуассона.

Если случайные переменные имеют производящие функции:

то, согласно (11.9), производящая функция суммы независимых случайных переменных с пуассоновским распределением будет иметь вид:

Параметр результирующего распределения равен Хх + Х2.

2. Если число элементов ./V множества подчиняется пуассоновскому распределению с параметром X и каждый элемент выбирается независимо с вероятностью р, тогда элементы выборки размером Y распределены по закону Пуассона с параметром рХ.

Пусть , где отвечает распределению Бернулли, а N — распределению Пуассона. Соответствующие производящие функции, согласно (11.17), (11.41):

Производящая функция случайной переменной Yвычисляется в соответствии с (11.14)

т.е. производящая функция соответствует распределению Пуассона с параметром рХ.

3. Как следствие свойства 2 справедливо следующее свойство. Если число элементов ^множества распределено по закону Пуассона с параметром X и множество случайным образом распределяется с вероятностями /?, и р2 = 1 — Р на две группы, тогда размеры множеств 7V, и N2 независимы и распределены по Пуассону с параметрами р{к и р{к.

Для удобства использования представим полученные результаты относительно дискретных распределений в виде табл. 11.1 и 11.2.

Таблица 11.1. Основные характеристики дискретных распределений

Распределение

Плотность

Диапазон

Параметры

tn |

<*х

„2 _ <5Х

СХ--2

Щ

Бернулли

Р{Х = } = р Р {X = 0} =

Р + Я =1

п — 0,1

Р

Р

Р<-Р)

ъ г

|Тз

Геометрическое

р(-р)к-1

к = 1,2,...

Р

1

Р

^ 1 1 |тз

1

Биномиальное

скрк(-Ргк

* = 1,2,...,#»

п,р

пр

пр{ - р)

1 -р пр

Пуассона

— ек!

к = 1,2,...

Х>0

X

X

1

X

Табл и ца 11. 2. Производящие функции дискретных распределений

Распределение

Производящая функция

Бернулли

(1 -p)+pz

Геометрическое

  • 1
  • 1 ^

Биномиальное

[(1 -p)+pz]"

Пуассона

еЧг-1)

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к дискретным?
  • 2. Что такое производящая функция и для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием производящей функции?
  • 4. Чему равна производящая функция суммы независимых случайных величин?
  • 5. Что называется составным распределением и как вычисляются производящие функции составных распределений?
  • 6. Дайте основные характеристики распределения Бернулли, приведите пример использования в задачах сервиса.
  • 7. Дайте основные характеристики геометрического распределения, приведите пример использования в задачах сервиса.
  • 8. Дайте основные характеристики биномиального распределения, приведите пример использования в задачах сервиса.
  • 9. Дайте основные характеристики распределения Пуассона, приведите пример использования в задачах сервиса.
 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>