Полная версия

Главная arrow Товароведение arrow Бухгалтерский учет и анализ.

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>

ДЕТЕРМИНИРОВАННОЕ МОДЕЛИРОВАНИЕ ФАКТОРНЫХ СИСТЕМ

Детерминированный факторный анализ в качестве цели выдвигает изучение влияния факторов на результативный показатель в случаях его функциональной зависимости от ряда факторных признаков.

Функциональную зависимость можно выразить различными моделями — аддитивной; мультипликативной; кратной; комбинированной (смешанной).

Аддитивную взаимосвязь можно представить как математическое управление, отражающее тот случай, когда результативный показатель (у) — это алгебраическая сумма нескольких факторных признаков:

Мультипликативная взаимосвязь отражает прямую пропорциональную зависимость исследуемого обобщающего показателя от факторов:

где П — общепринятый знак произведения нескольких сомножителей.

Кратная зависимость результативного показателя (у) от факторов математически отражается как частное от их деления:

Комбинированная (смешанная) взаимосвязь результативного и факторных показателей представляет собой сочетание в различных комбинациях аддитивной, мультипликативной и кратной зависимости:

где а, в, с и т.д. — переменные.

Известен ряд приемов моделирования факторных систем: прием расчленения; прием удлинения; прием расширения и прием сокращения исходных кратных двухфакторных систем типа: —. В результате процесса моделирования из двухфакторной кратной модели формируются аддитивно-кратные, мультипликативные и мультипликативно-кратные многофакторные системы типа:

Способы измерения влияния факторов в детерминированных моделях

Широкое распространение в аналитических расчетах получил способ цепной подстановки ввиду возможности использовать его в детерминированных моделях всех типов. Суть этого приема состоит в том, что для измерения влияния одного из факторов осуществляется замена его базового значения на фактическое, при этом остаются неизменными значения всех других факторов. Последующее сопоставление результативных показателей до и после замены анализируемого фактора дает возможность рассчитать его влияние на изменение результативного показателя. Математическое описание способа цепных подстановок при использовании его, например, в трехфакторных мультипликативных моделях выглядит следующим образом.

Трехфакторная мультипликативная система:

Последовательные подстановки:

Тогда для расчета влияния каждого из факторов надо выполнить такие действия:

Баланс отклонений:

Последовательность расчетов способом цепных подстановок рассмотрим на конкретном числовом примере, когда зависимость результативного показателя от факторных может быть представлена четырехфакторной мультипликативной моделью.

В качестве результативного показателя избрана стоимость реализованной продукции. Ставится цель исследовать изменение этого показателя под воздействием отклонений от базы сравнения ряда трудовых факторов — численности рабочих, целодневных и внут- рисменных потерь рабочего времени и среднечасовой выработки. Исходная информация приведена в табл. 15.1.

Таблица 15.1

Информация для факторного анализа изменения стоимости реализованной

продукции

Показатель

Обозначение

База

сравнения

Отчет

Абсолютное

отклонение

Темп роста, %

Относительное отклонение, %-ных пунктов

1.Реализованная продукция, тыс. руб.

РП = N

417 000

432 012

+ 15 012

103,6

+3,6

2. Среднегодовая численность рабочих, чел.

СЧ

1700

1660

-40

97,65

-2,35

3.Общее число отработанных рабочими чел./дней, тыс.

ОД

420

414

-6

98,57

-1,43

4.Общее число отработанных рабочими чел./ч, тыс.

ЧЧ

3360

3226

-134

96,01

-3,99

5.Отработано за год одним рабочим днем (стр.З : стр.2)

Д

247

249

2

100,95

0,95

6.Средняя продолжительность рабочего дня, ч (стр.4: стр.З)

Ч

8

7,79

-0,21

97,40

-2,60

7.Среднечасовая выработка, руб. (стр.1 : стр.4)

СВ

124,11

133,92

+9,81

107,90

+ 7,90

8.Среднегодовая выработка одного рабочего, тыс. руб. (стр.1 : стр.2)

пт

245,29

260,25

+ 14,95

106,10

+6,10

Исходная четырехфакторная мультипликативная модель:

Цепные подстановки:

Расчеты влияния изменения факторных показателей приводятся ниже.

1. Изменение среднегодовой численности рабочих:

2. Изменение числа дней, отработанных одним рабочим:

3. Изменение средней продолжительности рабочего дня:

4. Изменение среднечасовой выработки:

Баланс отклонений:

Результаты расчетов способом цепных подстановок зависят от правильности определения соподчиненности факторов, от их классификации на количественные и качественные. Изменение количественных мультипликаторов должно проводиться раньше, чем качественных.

В мультипликативных и комбинированных (смешанных) моделях широко применяется способ абсолютных разниц, также основанный на приеме элиминирования и отличающийся простотой аналитических расчетов. Правило расчетов этим способом в мультипликативных моделях состоит в том, что отклонение (дельту) по анализируемому факторному показателю надо умножить на фактические значения мультипликаторов (сомножителей), расположенных слева от него, и на базовые значения тех, которые расположены справа от анализируемого фактора.

Порядок факторного анализа способом абсолютных разниц для комбинированных (смешанных) моделей рассмотрим с помощью математического описания. Исходная базисная и фактическая модели:

Алгоритм расчета влияния факторов способом абсолютных разниц:

Баланс отклонений:

Способ относительных разниц используется, так же как и способ абсолютных разниц, только в мультипликативных и комбинированных (смешанных) моделях.

Для мультипликативных моделей математическое описание названного приема будет следующим. Исходные базовая и фактическая четырехфакторные мультипликативные системы:

Для факторного анализа способом относительных разниц вначале надо определить относительные отклонения по каждому факторному показателю. Например, по первому фактору это будет процентное отношение его изменения к базе:

Затем для определения влияния изменения каждого фактора производятся такие расчеты.

Рассмотрим последовательность действий на числовом примере, исходная информация для которого содержится в табл. 15.1.

В гр. 7 табл. 15.1 отражены относительные отклонения по каждому факторному показателю.

Результаты влияния изменения каждого из факторов на отклонение результативного показателя от сравнения будут следующими:

Баланс отклонений: РП, -РП0 =432 012-417 000 = +15 012 тыс. руб. (-9811,76) + 3854,62+ (-10 673,21) + 31 642,36 = 15 012,01 тыс. руб. Индексы представляют собой обобщающие показатели сравнения во времени и в пространстве. Они отражают процентное изменение изучаемого явления за какой-то период времени по сравнению с базисным периодом. Такая информация дает возможность сравнить изменения различных факторов и проанализировать их поведение.

В факторном анализе индексный метод используется в мультипликативных и кратных моделях.

Обратимся к его использованию для анализа кратных моделей. Так, агрегатный индекс физического объема продаж (Jg) имеет вид:

где q — индексируемая величина количества; р0 — соизмеритель (вес), цена, зафиксированная на уровне базисного периода.

Разница между числителем и знаменателем в этом индексе отражает изменение товарооборота за счет изменения его физического объема.

Агрегатный индекс цен (формула) Пааше записывается таким образом:

Используя информацию, содержащуюся в табл. 15.1, рассчитаем влияние изменения индекса среднесписочной численности рабочих и индекса среднегодовой выработки одного рабочего на темп роста реализованной продукции.

Производительность труда (ПТ) одного рабочего в базовом году равна 245,29 млн руб., а в отчетном — 260,25 млн руб. Индекс роста (/пт) составит 1,0610 (260,25 : 245,29).

Индексы роста реализованной продукции (/рп) и среднегодовой численности рабочих (/сч) по данным табл. 15.1— соответственно:

Взаимосвязь трех указанных индексов можно представить в виде двухфакторной мультипликативной модели:

Факторный анализ способом абсолютных разниц дает такие итоги.

1. Влияние изменения индекса среднесписочной численности рабочих:

2. Влияние изменения индекса производительности труда:

Баланс отклонений: 1,0360 — 1,0 = +0,0360 или (-0,0235) + 0,0596= + 0,0361 • 100 = 3,61%.

Интегральный способ применяется в детерминированном факторном анализе в мультипликативных, кратных и комбинированных моделях.

Этот метод позволяет разложить дополнительный прирост результативного показателя в связи с взаимодействием факторов между ними.

Практическое использование интегрального метода базируется на специально разработанных рабочих алгоритмах для соответствующих факторных моделей. Например, для двухфакторной мультипликативной модели = ав) алгоритм будет таким:

В качестве примера используем двухфакторную зависимость реализованной продукции (РП) от изменения среднегодовой численности рабочих (СЧ) и их среднегодовой выработки (ПТ):

Исходная информация имеется в табл. 15.1.

Влияние изменения среднегодовой численности:

Влияние изменения производительности труда (среднегодовой выработки одного рабочего):

Баланс отклонений:

В факторном анализе в аддитивных моделях комбинированного (смешанного) типа может использования способ пропорционального деления. Алгоритм расчета влияния факторов на изменение результативного показателя для аддитивной системы типа у = а + в + с будет таким:

В комбинированных моделях расчет влияния факторов второго уровня может быть выполнен способом долевого участия. Вначале рассчитывается доля каждого фактора в общей сумме их изменений, а затем эта доля умножается на общее отклонение результативного показателя. Алгоритм расчета такой:

Систематизируем рассмотренные способы расчетов влияния отдельных факторов в детерминированном факторном анализе с использованием схемы (рис. 15.4).

Способы расчетов в детерминированном факторном анализе

Рис. 15.4. Способы расчетов в детерминированном факторном анализе

 
<<   СОДЕРЖАНИЕ ПОСМОТРЕТЬ ОРИГИНАЛ   >>