Полная версия

Главная arrow Строительство arrow Газифицированные котельные агрегаты

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Условия устойчивой работы горелок. Стабилизация пламени в топке. Отрыв и проскок

Наличие устойчивого пламени является важнейшим условием надежной и безопасной работы агрегата. При неустойчивом горении пламя на определенных режимах может проскочить внутрь горелки или оторваться от нее. В обоих случаях это может привести к загазованию топки и газоходов и взрыву газовоздушной смеси при последующем повторном розжиге.

Рассмотрим основные факторы, определяющие устойчивость пламени, на примере простейшей горелки в виде трубки, из устья которой в атмосферу выходит с небольшой скоростью газовоздушная смесь. Если бы скорость выходящего потока смеси была одинаковой по всему сечению устья и близкой к скорости распространения пламени, то при поджигании в потоке образовался бы на некотором расстоянии от устья плоский горящий фронт пламени. На самом деле выходящий из устья поток смеси всегда имеет неравномерное поле скоростей: чем ближе к стенкам, оказывающим тормозящее воздействие, тем меньше скорость. Самая большая скорость в центре потока может значительно превышать нормальную скорость распространения пламени ун (составляющую общей скорости распространения пламени, перпендикулярную к фронту горения). В результате плоская форма фронта пламени не может сохраниться и при круглом устье горелки приобретает вид конуса (рис. 7.1). Вторая составляющая скорости распространения пламени (перпендикулярная к V,,) направлена вдоль наклонной поверхности конуса и стремится снести пламя к его вершине, следовательно, погасить его. Для устойчивого существования конусного пламени необходимо постоянно поджигать газовоздушную смесь. Это происходит в точках вблизи стенок, где скорость выхода потока из устья очень мала. Стенки горелки не только притормаживают поток смеси, но и охлаждают его. Вследствие этого вблизи стенок также уменьшается скорость распространения пламени. В области, прилегающей к устью горелки, конусный фронт пламени разворачивается и его края становятся параллельными плоскости устья. В результате в месте изгиба конуса образуется кольцевая зона, где скорости потока и распространения пламени становятся равными друг другу. Эта зона и служит постоянным поджигающим очагом для всей остальной конусной поверхности горения.

Схема горения ламинарного потока газовоздушной смеси

Рис. 7.1. Схема горения ламинарного потока газовоздушной смеси

/ — внешний (наружный) конус; 2 — внутренний конус; 3 — линии тока;

4 — корпус горелки

Мощность кольцевой поджигающей зоны, а следовательно, и устойчивость всего факела горелки зависят от состава смеси: чем больше в ней горючего газа, тем надежнее поджигающий пояс и меньше вероятность отрыва факела. При прочих равных условиях наибольшую устойчивость имеет диффузионный факел, когда из устья горелки выходит только газ.

При возрастании тепловой мощности горелки и достижении скоростью потока какого-то предела поджигающее воздействие зоны оказывается недостаточным — пламя отрывается. Отрыв может быть частичным, когда горение происходит на некотором расстоянии от устья горелки, и полным, когда горение прекращается полностью. Уменьшение тепловой мощности горелки ведет к тому, что на каком-то режиме скорость потока окажется меньше скорости распространения пламени — происходит проскок, или обратный удар, пламени.

При устойчивом горении частично подготовленной смеси пламя (см. рис. 7.1) состоит из двух конусов — наружного 1 и внутреннего 2. Последний представляет собой поверхность, в которой выгорает та часть горючего, которая обеспечена первичным воздухом, имеющимся в смеси. В зоне горения, т.е. на поверхности внутреннего конуса, развивается высокая температура, и она выделяется на фоне синеватого внешнего конуса своим зеленовато-голубоватым цветом. Основание внутреннего конуса располагается от обреза устья на расстоянии, примерно равном толщине зоны горения, которая образует поверхность конуса (для смеси метана с воздухом — около 0,6 мм). Остальная часть горючего догорает в наружном конусе (иногда называемом мантией) за счет кислорода, диффундирующего в него из окружающей среды.

Увеличивая скорость потока смеси и меняя в нем а, можно видеть переход от ламинарного к турбулентному течению: вследствие появления вихревых движений и пульсаций ясно очерченный конусный фронт пламени размывается, его толщина возрастает, пламя становится неустойчивым, стремится оторваться или проскочить внутрь горелки.

Количество первичного воздуха в газовоздушной смеси является одним из основных факторов, влияющих на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламеняемости (взрываемости), пламя вообще нс распространяется. С увеличением количества первичного воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшего значения при содержании воздуха около 90 % теоретически необходимого. Из этого следует, что при увеличении подачи первичного воздуха в горелку и приближении состава смеси к стехиометрическому возрастает опасность проскока пламени. Поэтому при увеличении тепловой мощности горелок обычно увеличивают сначала подачу газа, а затем воздуха, а при уменьшении нагрузки — наоборот. По этой же причине в момент зажигания горелок некоторых конструкций горение сначала идет за счет вторичного воздуха, и по мере увеличения тепловой мощности в них подают первичный воздух.

Недопустимы как отрыв пламени (частичный и полный), так и его проскок внутрь горелки. В первом случае топка и газоходы, а иногда и помещение котельной заполняются несгоревшим газом, образуется взрывоопасная газовоздушная смесь, что при наличии источника высокой температуры может привести к взрыву. Во втором случае пламя, как и при отрыве, может погаснуть и газ начнет выходить в топку, заполняя ее и газоходы. Если горение сохранится в горелке, то из-за резкого увеличения ее сопротивления оно будет происходить с большим химическим недожогом, и продукты неполного сгорания газа, заполняющие топку и газоходы, также могут образовать взрывоопасные и токсичные (в основном за счет оксида углерода) смеси. Сама горелка вследствие перегрева может выйти из строя. Отсюда следует, что конструкция горелки должна обеспечивать устойчивость пламени без его отрыва и проскока во всем расчетном диапазоне регулирования ее тепловой мощности.

Рассмотрим некоторые мероприятия, применяемые для стабилизации пламени на практике. Если из устья горелки (или огневых отверстий горелки многофакельного типа) выходят чистый газ или газовоздушная смесь, концентрация газа в которой больше верхнего предела воспламеняемости, то проскока пламени произойти не может. Следовательно, при необходимости кратковременного снижения тепловой мощности горелки ниже значений, предусмотренных паспортом, приходится во избежание проскока снижать содержание в смеси первичного воздуха. Такой метод расширения диапазона устойчивой работы применим в основном для горелок частичного смешения, выдающих из устья газовоздушную смесь с осг~ 0,3—0,7, например инжек-ционных горелок низкого давления.

Иначе приходится решать вопросы устойчивости горения при использовании горелок, из устья которых поступает газовоздушная смесь, по составу близкая к стехиометрической, а также предназначенных для работы с аг > 1. Как правило, в этих случаях уменьшение а,, недопустимо и диапазон устойчивой работы горелки становится таким узким, что практически не дает возможности вообще регулировать расход газа через нее.

Для того чтобы горелки этого типа могли работать без проскока пламени в достаточно широких пределах регулирования, скорость выхода смеси из устья принимают в 30—50 раз больше скорости распространения пламени. В некоторых конструкциях горелок, чтобы избежать проскока при малой тепловой мощности, используют метод подачи газа через круглые каналы (отверстия) или щели, размеры которых принимают настолько малыми, что они приближаются к критическим. При размерах каналов меньше критических проскок пламени через них невозможен из-за резкого уменьшения нормальной скорости распространения пламени вследствие усиленного теплоотвода от корня факела. Для стехиометрической смеси метана с воздухом критический диаметр канала равен примерно 3 мм, щели — 1,2 мм.

Устойчивость факела в отношении отрыва у горелок, выдающих газовоздушную смесь с а > 1, обеспечивают устройством специальных стабилизаторов. Конструктивно стабилизаторы могут быть встроены непосредственно в горелку (например, тела плохо обтекаемой формы, кольцевые стабилизаторы), примыкать к ней (керамические туннели, поджигающие факелы стационарных запальников) или располагаться в топке на некотором удалении от горелки (керамические горки, решетки, рассекатели).

Схема стабилизации пламени горелки факелом стационарного запального устройства приведена на рис. 7.2,а. Надежность этого метода зависит в свою очередь от устойчивости запального факела. Наиболее широкое распространение в печах и котлах получили керамические туннели цилиндрической, конической, прямоугольной или щелевидной формы. В туннель обычно поступает подготовленная смесь газа с воздухом с предварительным подогревом воздуха или без него (в теплотехнических установках газ, как правило, не подогревают). В ряде случаев в туннель подают частично подготовленную газовоздушную смесь или даже раздельно газ и воздух, и тогда туннель кроме своего основного назначения — стабилизировать пламя — выполняет функции смесителя. В туннель можно подавать из устья горелки прямолинейный поток газовоздушной смеси, в которой все линии тока параллельны оси горелки или имеют с ней небольшой угол (при конфузорном устье). Такие горелки иногда называют прямоструйными. К ним относятся, например, инжекпи-онные горелки среднего давления. В туннель можно подавать предварительно закрученный поток газовоздушной смеси. Горелки с закруткой потока, выходящего из устья, часто называют вихревыми.

а) б) в)

Схемы стабилизирующих устройств, предотвращающих

Рис. 7.2. Схемы стабилизирующих устройств, предотвращающих

отрыв пламени

а — пилотный факел; б — цилиндрический туннель с внезапным расширением; в — цилиндрический туннель без расширения; г — конический туннель; О — керамическая горка; е — кольцевой стабилизатор; ж, з — тела плохо обтекаемой формы (цилиндрическое, коническое)

В качестве стабилизаторов пламени могут использоваться различного рода раскаленные керамические поверхности, на которые направляется газовоздушная смесь, выходящая из устья горелки (горки, рассекатели, столбики, стенки, решетки и т.п.). В этом случае керамическая поверхность располагается в топке так, чтобы ее можно было раскалить пламенем той же горелки, работающей устойчиво при недостатке воздуха. После разогрева огнеупора до температуры, достаточной для поджигания газа, количество воздуха, поступающего в горелку, увеличивается до заданного и пламя при отрыве от устья горелки стабилизируется на поверхности раскаленного до 1000—1200 °С огнеупора (рис. 7.2,д). Стабилизаторы этого типа отличаются от других тем, что расположены на некотором расстоянии от устья горелки. Их стабилизирующая способность несколько меньше, чем керамических туннелей.

Широкое применение получили стабилизаторы в виде тел плохо обтекаемой формы (рис. 7.2,ж,з). За телом плохо обтекаемой формы, введенным в поток газовоздушной смеси, образуется зона заторможенного движения частиц. При соответствующих поперечных размерах стабилизатора в этой зоне возникают обратные токи горячих продуктов горения, т.е. создается зона рециркуляции. Слои газовоздушной смеси, расположенные на границе с зоной рециркуляции, подогревают до температуры воспламенения и поджигают, стабилизируя пламя в основном потоке. Стабилизирующая способность тела плохо обтекаемой формы зависит от его формы и размеров, наличия и размеров зоны рециркуляции, а также состава смеси (чем ближе он к стехиометрическому, тем надежнее стабилизация). Наибольшей стабилизирующей способностью обладают диски и шайбы. Следовательно, правильно сконструированный и расположенный стабилизатор в виде тела плохо обтекаемой формы может исключить отрыв пламени при достаточно высокой скорости смеси, выходящей из устья горелки. Достоинство этих стабилизаторов составляют упрощение монтажа и уменьшение габаритов га-зогорелочного устройства, так как отпадает необходимость в устройстве туннелей, а стабилизатор, как правило, встраивается в конструкцию горелки.

Этими же достоинствами обладают и кольцевые стабилизаторы (рис. 7.2,с), у которых часть газовоздушной смеси (от 5 до 10 %) отделяется от основного потока и направляется наружу не через устье, а через боковые отверстия 3. Эта часть газовоздушной смеси, выйдя из отверстий, попадает в кольцевую полость 4, образованную наружной поверхностью огневого насадка 2 и специальным кольцом /. Так как площадь поперечного сечения кольцевой щели значительно больше суммарной площади отверстий, то скорость смеси уменьшается до значения, при котором отрыва пламени не может произойти. Устойчивое горение газа у кольца обеспечивает надежное поджигание всей смеси, выходящей из устья горелки с большой скоростью. Кольцевые стабилизаторы могут компоноваться с горелками, выдающими газовоздушную смесь с а = 0,2—1,1.

К недостаткам кольцевых стабилизаторов и тел плохо обтекаемой формы можно отнести необходимость применения жаропрочного материала.

 
<<   СОДЕРЖАНИЕ   >>