Полная версия

Главная arrow Медицина arrow Валеология

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

ОПОРНО-ДВИГАТЕЛЬНАЯ СИСТЕМА

Одной из важнейших функций организма человека является передвижение в пространстве. Ее выполняет опорно-двигательный аппарат, состоящий из двух частей: активной и пассивной. К пассивной относятся кости, соединяющиеся при помощи различного вида соединений, к активной — мышцы.

Скелет (от греч. зкеШоБ — высохший, высушенный) представляет собой комплекс костей, выполняющих множество функций: опорную, защитную, локомоторную, формообразующую, преодоления силы тяжести. Общая масса скелета — от 1/7 до */5 массы тела человека. В состав скелета человека входит более 200 костей, 33—34 кости скелета не парные. Это позвонки, крестец, копчик, некоторые кости черепа и грудина, остальные кости парные. Скелет условно подразделяют на две части: осевой и добавочный. К осевому скелету относится позвоночный столб (26 костей), череп (29 костей), грудная клетка (25 костей); к добавочному — кости верхних (64) и нижних (62) конечностей.

Кости скелета являются рычагами, приводимыми в движение мышцами. В результате этого части тела изменяют положение по отношению друг к другу и передвигают тело в пространстве. К костям прикрепляются связки, мышцы, сухожилия, фасции, являющиеся элементами мягкого остова или мягкого скелета, который также принимает участие в удержании органов возле костей, образующих твердый (жесткий) скелет. Скелет образует вместилище для органов, защищая их от внешних воздействии: в полости черепа расположен головной мозг, в позвоночном канале — спинной мозг, в грудной клетке — сердце, крупные сосуды, легкие, пищевод и др., в полости таза — мочеполовые органы.

Кости представляют собой необычайно сложный и очень прочный комплекс пространственных систем, что натолкнуло архитекторов на создание «дырчатых конструкций».

Кости выдерживают большие нагрузки. Так, большая берцовая кость выдерживает вес, в 2 тыс. раз превышающий ее вес (1650 кг), плечевая кость — 850 кг, берцовая кость — до 1500 кг.

Кости участвуют в минеральном обмене, они являются депо кальция, фосфора и т.д. Живая кость содержит витамины А, Д С и др. Жизнедеятельность кости зависит от функций гипофиза, щитовидной и паращитовидной желез, надпочечников и половых желез (гонад).

Скелет образован разновидностями соединительной ткани — костной и хрящевой, которые состоят из клеток и плотного межклеточного вещества. Кости и хрящи тесно связаны между собой общностью строения, происхождения и функции. Большинство костей (кости конечностей, основания черепа, позвонки) развивается из хрящей, их рост обеспечивается за счет пролиферации (увеличения количества клеток). Небольшое количество костей развивается без участия хряща (кости крыши черепа, нижняя челюсть, ключица). Некоторые хрящи не связаны с костью и в течение всей жизни человека не изменяются (хрящи ушных раковин, воздухоносных путей). Некоторые хрящи связаны с костью функционально (суставные хрящи, мениски).

У зародыша человека и других позвоночных животных хрящевой скелет составляет около 50% массы всего тела. Однако постепенно хрящ заменяется костью, у взрослого человека масса хряща достигает около 2% массы тела. Это суставные хрящи, межпозвоночные диски, хрящи носа и уха, гортани, трахеи, бронхов и ребер. Хрящи выполняют следующие функции:

  • 1) покрывают сочлененные поверхности, обладающие благодаря этому высокой устойчивостью к износу;
  • 2) суставные хрящи и межпозвоночные диски, являющиеся объектами приложения сил сжатия и растяжения, осуществляют их передачу и амортизацию;
  • 3) хрящи воздухоносных путей и наружного уха формируют стенки полостей. К другим хрящам прикрепляются мышцы, связки, сухожилия.

Хрящевая ткань содержит около 70—80% воды, 10—15 — органических веществ, 4—7% солей. Около 50—70% сухого вещества хряща приходится на долю коллагена. В зависимости от состава хрящи бывают гиалиновые, эластические и коллагеноволокнистые. Подобно другим разновидностям соединительной ткани хрящевая ткань состоит из немногочисленных клеток (хондроцитов) и вырабатываемого ими плотного межклеточного вещества. Хрящи не имеют кровеносных сосудов, их питание осуществляется за счет диффузии из окружающих тканей.

Гиалиновый хрящ гладкий, блестящий, голубовато-белого цвета. Из него образован в основном скелет эмбриона, у взрослого человека — реберные хрящи, большинство хрящей гортани, хрящи носа, трахеи, бронхов и суставные (с возрастом гиалиновый хрящ кальцифицируется).

Эластичный хрящ менее прозрачен, желтоватого цвета. Из эластичной хрящевой ткани состоит ушная раковина, голосовые отростки черпаловидных хрящей гортани и слуховая труба.

Волокнистый хрящ образует межпозвоночные диски, мениски коленного и височно-нижнечелюстного суставов. Волокнистый хрящ имеется в зонах прикрепления связок и сухожилий к костям и хрящам.

Кости образованы костной тканью, механические свойства которой обусловливают функции костей. Так, сопротивление свежей кости и чистой меди на растяжение одинаковы и в 9 раз больше, чем сопротивление свинца. Кость выдерживает сжатие 10 кг/мм2 (аналогично чугуну), в то время как кирпич — лишь 0,5 кг/мм2. Предел прочности ребер на излом составляет 110 кг/см2. Это связано с особенностями химического состава, структуры и архитектоники костей. Содержание воды в кости достигает 50%. В сухом остатке костной ткани содержится около 33% органических и 6—7% неорганических веществ.

Кость состоит из клеток (остеобластов и остеоцитов) и межклеточного вещества. Остеобласты — это многоугольные, кубические, отростчатые молодые клетки, остеоциты — зрелые многоотросчатые веретенообразные клетки. Остеобласты синтезируют компоненты межклеточного вещества и выделяют их из клетки через всю поверхность в разных направлениях, что и приводит к образованию лакун (пространств), в которых они залегают, превращаясь в остеоциты.

Различают два вида костной ткани: ретикулофиброзную (грубоволокнистую) и пластинчатую. Ретикулофиброзная костная ткань располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания. Она состоит из толстых неупорядоченных пучков коллагеновых волокон, между которыми находится аморфное вещество. В лакунах залегают остеоциты.

Пластинчатая костная ткань наиболее распространена в организме. Она образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов и тонковолокнистого костного основного вещества. Волокна, образующие пластинки, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправлены и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости.

Кость снаружи, кроме сочлененных поверхностей, покрыта надкостницей, представляющей собой прочную соединительнотканную пластинку, богатую кровеносными и лимфатическими сосудами, нервами. Надкостница прочно сращена с костью при помощи соединительнотканных прободающих волокон, проникающих в глубь кости. Во внутреннем слое надкостницы расположены тонкие веретенообразные «покоящие» остеогенные клетки, за счет которых происходит развитие, рост в толщину и регенерация костей после повреждения.

Кости живого человека — динамическая структура, в которой происходит постоянный обмен веществ, анаболитические и катабо-литические процессы, разрушение старых и создание новых костных пластинок. Кости приспосабливаются к изменяющимся условиям жизнедеятельности организма, под влиянием которых происходит перестройка их макро- и микроскопического строения. Внешняя форма костей меняется под влиянием растяжения и давления, а кости развиваются тем лучше, чем интенсивнее деятельность связанных с ними мышц.

Позвоночный столб слагается из 33 отдельных позвонков. Различают шейный отдел (7 шейных позвонков), грудной (12 грудных), поясничный (5 поясничных), крестцовый (5 крестцовых) и копчиковый (4 или 5 копчиковых позвонков). Крестцовые и копчиковые позвонки срастаются между собой и образуют крестец и копчик.

Типичный позвонок имеет тело, невральную дугу, которая окружает и защищает спинной мозг, и семь отростков. Непарный, обращенный назад отросток называют остистым. Он служит для прикрепления связок и мышц. Тела позвонков соединяются между собой при помощи межпозвонковых хрящей, которые совместно со связками и мышцами, идущими вдоль позвоночника, удерживают тело в вертикальном положении.

Все позвонки различаются по форме и величине, особенно отличаются от других два первых шейных позвонка — атлант и эпи-строфей. Подвижное соединение этих позвонков облегчает движение головы. Остальные позвонки чем ниже расположены, тем массивнее, так как испытывают большую тяжесть. Внутри позвоночного столба в позвоночном канале, образованном отверстиями в позвонках, расположен спинной мозг. Он надежно защищен со всех сторон.

Позвоночный столб имеет изгибы вперед — лордозы, назад (кзади) — кефозы, в стороны — сколиозы. Изгибы позвоночного столба увеличивают его рессорные свойства, т.е. способствуют пружинящим движениям позвоночного столба. Под действием внешних влияний изгибы могут изменяться в течение дня. Поэтому высота позвоночника, а следовательно, и рост человека могут колебаться в течение суток в среднем от 1 до 2—2,5 см.

Позвоночный столб новорожденного не имеет изгибов, они появляются в процессе роста организма. В начале у новорожденного появляется шейный лордоз (по мере того, как ребенок начинает держать голову), затем грудной кефоз (ребенок начинает сидеть), а далее поясничный лордоз (он начинает стоять) и крестцовый кефоз. К пяти-шести годам изгибы видны отчетливо. У детей школьного возраста можно часто наблюдать выраженный сколиоз.

Грудная клетка сзади поддерживается позвоночником. В обе стороны от него отходят плоские кости — ребра, представляющие костные изогнутые пластинки. В ребре различают среднюю часть (тело) и два конца (передний и задний). Задний конец ребра имеет утолщение — головку, которая посредством составной поверхности сочленяется с телом позвоночника. За головкой ребра находится средняя часть — шейка, а за ней бугорок.

Каждое ребро сочленяется с двумя позвонками одновременно. Исключением являются 9-й (не всегда), 10, 11, 12-й грудные позвонки, каждый из которых соединяется с одним ребром. Передними концами ребра направлены к грудине. Хрящи верхних семи пар ребер прирастают к грудине (истинные, или грудные, ребра). Следующие три пары ребер (8, 9, 10-я) прирастают каждое своим хрящом к хрящу вышележащей пары, образуя реберную дугу. Это так называемые ложные ребра. Две последние пары (11-я, 12-я) не доходят до грудины и очень изменчивы по длине (свободные ребра).

К ребрам прикреплены дыхательные мышцы и диафрагма. При вдохе ребра удаляются передними концами от позвоночника вперед и поднимаются кверху.

Плечевой пояс состоит из двух пар костей — лопаток и ключиц. Кости и суставы плечевого пояса дают руке опору и прочно связывают ее с туловищем.

Тазовый пояс образован тремя парами костей: седалищными, лобковыми и подвздошными. Кости таза выдерживают всю тяжесть туловища.

Скелет верхних конечностей образован: плечевой костью, лучевой и локтевой костями предплечья, восемью мелкими косточками запястья, пятью тонкими пястными костями и фалангами пальцев. Каждый палец имеет по три фаланги, кроме большого, у которого их только две.

Скелет нижних конечностей состоит из бедренной кости (бедро), большой и малой берцовых костей (в голени), 7 костей предплюсны (в области лодыжек и пятки), 5 костей плюсны (в передней части стопы) и 14 фаланг пальцев.

Череп имеет два отдела: мозговой и лицевой. Мозговой череп защищает головной мозг. Костные пластинки, из которых он состоит, отличаются большой прочностью. Черепную коробку образуют следующие кости: лобная, две височные, затылочная, две верхнечелюстные, две скуловые, две носовые, сошник, две слезные, подъязычная кость, небная. Единственно подвижная кость черепа — нижняя челюсть.

Некоторые кости черепа пронизаны пазухами, содержащими воздух (челюстные, лобные, пазухи основной и решетчатой кости). Это уменьшает общий вес черепа. С позвоночником он соединяется двумя затылочными мыщелками.

Соединения костей. Соединения между костями черепа неподвижны и прочны благодаря плотному вхождению зубцов одной кости в выемки другой. Эти соединения называют швами. Напротив, суставы — соединения подвижные. Например, сустав между бедренной костью и костями таза, между плечевой костью и лопаткой напоминают по форме шаровой шарнир. Их называют шаровыми суставами. Такая форма делает совершенно свободными движения вперед и назад, достаточно широкие движения в стороны, вращение внутрь и наружу.

В каждом суставе имеются три основных элемента: суставные поверхности, суставная сумка и суставная полость. Суставные поверхности покрыты хрящом. Суставная капсула (сумка) натянута между сочленяющимися костями; она прикрепляется по краям суставных поверхностей и переходит в надкостницу. В суставной сумке различают два слоя: наружный — фиброзный и внутренний — синовиальный. Суставная поверхность щелевидной формы и находится в суставной сумке. В полости сустава находится небольшое количество синовиальной (межсуставной) жидкости, которая смазывает суставные хрящи, благодаря чему уменьшается трение в суставах при движении.

По форме суставы делятся на шаровидные, эллипсовидные, седловидные, блоковидные, плоские и др. В зависимости от суставных поверхностей в одних суставах возможны движения вокруг одной оси (одноосные суставы), в других — вокруг двух (двуосные суставы), в третьих — вокруг трех осей (трехосные суставы). К одноосным относятся блоковидные и цилиндрические. Например, коленный сустав по форме блоковидно-вращательный, а голеностопный — блоковидный. Сустав называется простым, если он образован двумя костями, например плечевой, и сложным, если его образуют три кости и больше.

Скелет выполняет не только опорно-двигательную функцию, но и принимает участие в обмене веществ: он активно участвует в поддержании на определенном уровне минерального состава крови. Ряд веществ, входящих в состав кости (фосфор, кальций, лимонная кислота), могут вступать в обменные реакции.

Скелет — главное депо кальция и фосфора. Основное соединение минерального компонента костной ткани — фосфат кальция. Помимо основных элементов (кальция, фосфора и магния) в костной ткани содержится целый ряд микроэлементов. Количество их очень незначительно, но, тем не менее, они играют большую роль в качестве биологических катализаторов для гормонов, витаминов и ферментов. В настоящее время известно свыше 30 микроэлементов, содержащихся в костной ткани (медь, стронций, цинк, барий и др.). Содержание микроэлементов в костной ткани колеблется в зависимости от возраста. Постепенно происходит накопление некоторых из них, что является причиной повышения ломкости и хрупкости кости с возрастом. Происходит замена этими микроэлементами ионов кальция в кристаллической решетке, что ведет к утрате механической прочности кости.

Если кальций выводится из организма больше, чем поступает с пищей, развивается заболевание костной системы у детей и взрослых, выражающееся в изменениях и искривлениях скелета у детей и размягчения костей у взрослых. Подобное заболевание может развиваться и при низком всасывании кальция в кишечнике (рахит). Заболевание лечится большими дозами витаминов группы /). Рахит может возникать при избытке в почве, воде и воздухе некоторых микроэлементов. Так, например, избыток в почве бериллия приводит к его избыточному накоплению в костной ткани, к вытеснению кальция и к возникновению «бериллиевого рахита», который не вылечивается витамином /). Избыточное поступление в организм алюминия приводит к образованию в желудке нерастворимых соединений алюминия с фосфатами, вследствие чего в скелет поступает недостаточное количество фосфора.

В норме в костной ткани непрерывно протекают два противоположных процесса — воспроизведение и растворение костного вещества. В раннем возрасте идет как интенсивное костеобразование, так и рассасывание со стороны костномозгового канала, поэтому толщина стенок кости в этот период не изменяется. К 12 годам наблюдается преобладание процесса костеобразования и утолщения стенок кости. После периода стабилизации (старше 40 лет) начинает преобладать процесс рассасывания. Стенки кости уменьшаются, они становятся хрупкими и легко подвергаются травмированию. Изменению механических свойств кости способствует также сильная минерализация остеоцитов, развивающаяся по мере накопления минеральных веществ в костной ткани. Таким образом, с возрастом увеличивается содержание минеральных солей и уменьшается содержание количества воды и органических веществ.

У новорожденного внутри кости содержится красный костный мозг, назначение которого — производить красные кровяные тельца (эритроциты). После рождения костный мозг, который находится в полостях костных трубок, утрачивает функцию кроветворения и становится желтым костным мозгом — скоплением внутрикостной жировой ткани. Но во всех плоских (грудина и др.) и в концах длинных костей остается красный костный мозг.

Общий обзор мышечной системы человека. У позвоночных животных и человека различают три разных по строению группы мышц: поперечно-полосатые мышцы скелета, поперечно-полосатая мышца сердца и гладкие мышцы внутренних органов, сосудов и кожи. Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным. Гладкая мышца, как и сердечная, имеет строение синцития, т.е. одни мышечные волокна переходят в другие, и хотя между ними имеются прото-плазматические перерывы, возбуждение может распространяться с одного мышечного волокна на другое. Это приводит к тому, что возбуждается вся мышца, если возбуждение поступает к малому числу волокон.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перистальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. Скелетные мышцы образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. Сила мышцы пропорциональна количеству волокон, составляющих брюшко мышцы.

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При сокращении концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

У двуосного сустава (эллипсоидный, мыщелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемещает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Строение и механизм сокращения скелетной мышцы. Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из ЦНС. Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Мышечная ткань в ответ на раздражение, приходящее из спинного мозга по мотонейронам, возбуждается, т.е. мышечная ткань обладает свойством возбудимости. Порог раздражения является величиной, которая характеризует возбудимость живой ткани. Максимальная сила раздражения мышцы — это та сила раздражающего стимула, на которое отвечает все мышечное волокно одной мышцы, и ответ на максимальную силу раздражения является максимальным. Если сила раздражения достигла максимальной величины, то как бы мы после этого не увеличивали раздражающий стимул, большего ответа мы не получим. Когда наступает потенциал действия и мышца начинает сокращаться, она становится невозбудимой, как бы велико оно не было. Такое состояние мышцы называется абсолютной реф-рактерностью. Постепенно возбудимость восстанавливается, и еще в период сокращения можно получить ответ мышцы на дополнительное раздражение, но сила его должна быть больше, чем та, которая вызвала первоначальный ответ. Если вслед за одним раздражение приходит другое, причем через интервал меньший, чем весь период сокращения мышцы, то происходит суммация отдельных сокращений и наступает длительное и сильное сокращение мышцы — тетанус. После прекращения раздражения мышца расслабляется, но не сразу, а постепенно, и время расслабления значительно больше времени сокращения.

Нервный импульс, приходящий по аксону к месту контакта нервного волокна с мышечным, вызывает накопление и высвобождение специфического вещества — медиатора. В нервно-мышечном синапсе это ацетилхолин. В окончаниях аксона он находится в пузырьках — везикулах. В состоянии покоя медиатор выделяется в незначительных количествах в синаптическую щель. При возбуждении пузырьки в большом количестве подходят к синаптической мембране (со стороны аксона) и медиатор изливается в щель. Подходя к мембране мышечного волокна, он взаимодействует с белком-рецепиентом (холинорецептором), что приводит к изменению свойств мембраны, открываются каналы для ионов натрия. Движение ионов внутрь волокна создает местную деполяризацию мембраны только в участках контакта, что и является источником возникновения потенциала действия мышечного волокна. Возникнув в участке синапса, потенциал действия распространяется вдоль волокна, вызывая распространение волны возбуждения и инициацию сокращения.

Рефлекторный характер деятельности мышц и координация мышечных сокращений. Участие определенных мышц в сгибании или разгибании зависит от их анатомического положения. Действительно, при движении в том суставе, с которым они непосредственно связаны, мышцы поступают как антагонисты: когда одна мышца сокращается, другая тормозится и расслабляется. Такое движение может возникнуть рефлекторно (отдергивание руки при уколе, ожоге, т.е. при действии раздражителя на рецепторы кожи руки), но может быть вызвано и произвольно. Откуда бы не вызывалось движение в данном суставе, согласованность, называемая в физиологии координацией движений, складывается в спинном мозге, в нервных клетках, длинные отростки которых (аксоны) идут к мышцам, образуя афферентные пучки волокон в нерве.

При возбуждении нервных клеток, иннервирующих мышцы-сгибатели, происходит торможение нервных клеток, отростки которых идут к мышцам-разгибателям. Однако при более общих движениях (движение в плечевом суставе, размахивание руками) или при рабочих инструментальных движениях мышцы-антагонисты могут работать как синергисты, т.е. возбуждаться и сокращаться одновременно. Это обеспечивает, например, фиксацию суставов в одном положении. Следовательно, антагонизм между разгибателями и сгибателями, определяемый анатомическим положением мышц, функционально складывается в нервных клетках спинного мозга.

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл. Мышечные волокна обладают тремя основными свойствами: возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия; проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения; сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Мотонейроны, управляющие мышцами, принимают импульсы от коры головного мозга по двум путям. Причем по одному передается информация преимущественно о произвольных и целенаправленных движениях, по другому — о рефлекторных движениях, а также об автоматизированных движениях, необходимых для поддержания позы или выполнения физиологически значимых стереотипичных движений — ходьбы, бега и др. Для того чтобы управление было эффективным, необходимо наличие обратной связи. Центральные структуры мозга должны «знать» о состоянии соответствующей мышцы. Обратная связь осуществляется, прежде всего, с участием рецепторов, расположенных в самих мышцах — это мышечные веретена и сухожильные рецепторы. Они улавливают соответственно степень растяжения мышцы, а также силу, которую развивает данная мышца, и посылают информацию в центральную нервную систему.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофи-бриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ресинтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец, третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.

Беда современного человека в малоподвижности. Именно гиподинамия является одной из основных причин болезней. Важность физических нагрузок стала для человека первостепенной, поскольку мышечная система испытывает все нарастающий дефицит своей деятельности. Любая физическая нагрузка предполагает прежде всего активацию всего организма: нервной системы, гормональной регуляции, систем обеспечения энергией и кислородом. Однако это обеспечение невозможно без главной коммуникативной системы обеспечения организма — системы кровоснабжения.

Недостаточная мышечная активность (гиподинамия), ограничение физической активности повышает заболеваемость и смертность. Установлено, что малоподвижный образ жизни, отсутствие достаточной физической нагрузки вызывает атрофию мышечной и костной ткани, уменьшает жизненную емкость легких, а главное — нарушение деятельности сердечно-сосудистой системы, тесно связанной с работой скелетной мускулатуры. Мышечная активность регулирует работу сердца как рефлекторно, посредством нервной системы, так и гуморальным путем, поскольку при сокращении мышц в кровь поступает много биологически активных веществ (молочной кислоты, углекислого газа), которые, воздействуя на сердце, повышают интенсивность биохимических процессов в сердечной мышце. Сокращение мышц способствует возвращению крови в сердце, что предупреждает застой крови в мышцах ног, варикозное расширение, тромбофлебит. При гиподинамии сердечно-сосудистая система детренируется, сердце теряет способность усиливать свою работу даже при небольших нагрузках, откуда недалеко от развития сердечно-сосудистых заболеваний. В целом детренированность характеризуется снижением функциональных способностей всего организма, и в первую очередь сердечно-сосудистой системы, дыхания, нервной системы и окислительно-восстановительных метаболических процессов. Уменьшение физической нагрузки с возрастом, сопровождаемое обычно увеличением количества потребляемой пищи, является основными причинами развития атеросклероза и ожирения. Исследования на животных показали, что даже умеренная физическая нагрузка уменьшает содержание жировых частиц и холестерина в крови, снижает опасность тромбообразования, способствует открытию коллатеральных (дополнительных) кровеносных сосудов. Физическая активность улучшает условия питания как самой мышечной системы, так и всех остальных органов человека.

 
<<   СОДЕРЖАНИЕ   >>