Полная версия

Главная arrow Экология arrow Архитектурная климатография

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

АРХИТЕКТУРА И КЛИМАТ

КЛИМАТОЗАЩИТНАЯ РОЛЬ АРХИТЕКТУРЫ

Как указано выше, климат — многолетний режим погоды, наблюдаемый в данной местности. Проблема оценки климата может рассматриваться на трех уровнях или в трех аспектах. Под макро-климатической (фоновой) оценкой следует понимать оценку метеорологических условий на значительной по площади территории, выделенной общностью климатических характеристик (регион, район, подрайон). Можно говорить о климате центрального района европейской части России, климате Урала, Кольского полуострова, подрайона 1 В (по карте СНиП) и др. Оценка мезоклимата (или со-масштабного ему местного климата) предполагает выявление климатических особенностей, свойственных городу или крупному населенному пункту как единому целому: климат Москвы, Владивостока, Салехарда и др.

Архитектурно-климатический анализ проводится с целью установления связей между архитектурой, под которой понимается искусство строить здания, сооружения и их комплексы, и климатическими условиями, в которых объекты архитектуры строятся или будут строиться. Архитектурно-климатический анализ начинают с анализа отдельных климатических характеристик: количества солнечной радиации, скорости ветра, температуры и влажности и т.д., — каждая из которых по-своему влияет на выбор архитектурно-градостроительных и связанных с ними инженерно-строительных решений. Пример областей учета климатических параметров в процессе архитектурного проектирования приведен в табл. 2.1.

Архитектурная климатография основана на комплексном анализе климатических факторов, оказывающих воздействие на архитектурную среду и находящегося в ней человека. Некоторые из этих факторов при одновременном воздействии взаимно усиливают это влияние. Например, при низких температурах воздуха ее анализируют совместно с ветровым воздействием, при высоких температурах — совместно с влажностью воздуха и солнечной радиацией и т.д. вплоть до комплексных показателей, учитывающих четыре и более факторов.

Связь архитектурной композиции с климатическими условиями («+» — связь существует)

Таблица 2.7

Категория композиции

Типы погоды и дополнительные характеристики климата

Суровая

Холодная

Прохладная

Комфортная

Теплая

Засушливая

Жаркая

влажная

без ветра

с ветром

без ветра

с ветром

без ветра

С косыми

дождями

без ветра

с повы

шенной

влажностью

без ветра

С пыльными

бурями

без ветра

со штилем

Архитектурное

пространство:

• замкнутое

+

+

+

+

+

• полузамкнутое

+

+

+

+

• полуоткрытое

+

+

+

+

• открытое

+

+

+

+

+

• неориентированное

+

+

• ориентированное

+

+

+

+

Масса, пластика объема:

• нерасчлененная

+

+

+

+

+

+

+

• малорасчлененная

+

+

+

+

+

• расчлененная

+

+

+

+

+

+

Окончание табл. 2.7

Категория композиции

Типы погоды и дополнительные характеристики климата

Суровая

Холодная

Прохладная

Комфортная

Теплая

Засушливая

Жаркая

влажная

без ветра

с ветром

без ветра

с ветром

без ветра

С косыми

дождями

без ветра

с повы

шенной

влажностью

без ветра

с пыльными

бурями

без ветра

со штилем

Обтекаемая

+

+

+

+

• ориентированная

+

+

+

+

+

Пластика поверхности:

• нерасчлененная

+

+

+

+

+

• малорасчлененная

+

• расчлененная

+

+

+

+

+

+

+

+

• активно расчлененная

+

В архитектуре здание рассматривается не просто как физическая оболочка, защищающая внутреннюю среду и человека от неблагоприятных климатических воздействий, а как совокупность архитектурных форм и приемов, позволяющих лучше приспособить его к природно-климатическим условиям и делающих эту защиту более эффективной и менее энергоемкой. Именно этим архитектурная климатография, изучающая аспекты связи архитектуры и различных факторов климата, отличается от других видов прикладной климатологии, в том числе строительной климатологии.

Способность зданий защищать их внутреннюю среду и прилегающую территорию от неблагоприятных климатических воздействий напрямую зависит от того, как в архитектурно-планировочном решении этих зданий на этапе их проектирования были учтены факторы окружающей среды, насколько было продумано применение тех или иных строительных материалов и конструкций, пластических и колористических решений.

Поскольку в большинстве районов земного шара летом и зимой погодные условия различаются, практически невозможно найти архитектурно-строительное решение, одинаково эффективно приспособленное для зимних и летних погодных условий. В связи с этим возникает еще одна практическая задача — создание адаптивной архитектурной формы и среды, по-разному, но одинаково эффективно «работающих» при различных типах погоды. Способность зданий адаптироваться к изменяющимся погодным условиям определяется наличием неизменяемых, «пассивных» климатозащитных архитектурных приемов, которые в большинстве случаев дополняются трансформируемыми, «активными» климатозащитными архитектурными деталями и элементами. К первым можно отнести, например, тектонику зданий и конструкцию их стен или ориентацию зданий по сторонам горизонта. Ко второй категории относятся архитектурные решения, касающиеся, например, создания буферных зон между внешними ограждениями и внутренними помещениями, микроклимат в которых контролируется трансформируемыми ограждающими конструкциями, трансформируемыми светопроемами, солнцезащитными устройствами и т.д.

Таким образом, в самом общем виде можно выделить три основных направления климатозащитных решений в архитектуре:

  • а) пассивные здания с неизменными климатозащитными функциями за счет применения пассивных архитектурных решений;
  • б) здания с активными климаторегулирующими архитектурными решениями, которые могут изменять степень и даже направление климатозащиты в зависимости от погодных условий;
  • в) здания, комбинирующие два перечисленных выше принципа. При этом пассивные приемы могут заменяться полностью или просто дополняться активными приемами регулирования климата, придавая зданию наиболее высокую «климатическую мобильность».

В пассивных зданиях (тип «а») адаптивность к внешним климатическим воздействиям может достигаться за счет различного режима использования внутренних помещений при разных типах погоды или в разное время года. Или наоборот, в них должна предусматриваться внутренняя планировка, позволяющая максимально сохранять функции помещений, независимо от сезона или погодных условий. Часто в ущерб такой планировке приносится ее функциональность. В подобных зданиях также очень важно на проектной стадии правильно определить наиболее подходящие строительные материалы и конструктивные решения.

В зданиях с активной климатозащитной архитектурой (тип «б») помещения могут адаптироваться ко внешним климатическим воздействиям — инсоляции, ветру, температуре — за счет трансформируемых архитектурных элементов: интерактивных фасадных конструкций, буферных зон, солнцезащитных или солнцеулавливающих устройств и т.д.

Применение современных строительных технологий и материалов позволяет архитекторам проектировать здания, обладающие намного большей гибкостью и эффективностью в плане климатозащиты. Такие здания могут более точно реагировать на изменения погоды или применяться в различных типах климата. Однако эта универсальность не должна лишать их индивидуальности, связанной с природно-климатическими условиями местности, для которой они проектируются, лишать их «духа места», обезличивать, делать чужеродными по отношению к природному окружению. Поэтому современные технологии не следует противопоставлять местным архитектурным традициям. Только сочетание накопленного в традиционной архитектуре опыта защиты от неблагоприятного климата и новых технологических возможностей позволяет архитекторам находить свое, новое, выразительное и в то же время характерное для той или иной культуры архитектурное решение, обеспечивающее максимальную функциональную эффективность, долговечность и экономичность на всех этапах жизненного цикла здания.

Сложность адаптации архитектурного решения к климатическим условиям заключается в том, что универсального архитектурно-климатического показателя, определяющего необходимость применения того или иного архитектурного способа климатозащиты, который мог бы с одинаковой степенью точности и надежности применяться в любых климатических районах, не существует. Поэтому последовательность архитектурно-климатического анализа предусматривает выявление тех климатических параметров и их сочетаний, которые создают основные проблемы для конкретной территории, после чего приступают к разработке архитектурно-климатических мероприятий по снижению их негативного воздействия на внутреннюю среду здания и прилегающую к нему территорию. В условиях континентального климата с контрастными погодными условиями зимой и летом эти решения могут носить взаимоисключающий характер, поэтому задача архитектора часто сводится к поиску разумного компромисса между наиболее неблагоприятными и наименее благоприятными климатическими воздействиями. Это является важной частью творческого процесса по поиску гармоничного решения связи архитектуры с природно-климатическими условиями конкретной местности.

Климатозащитные функции зданий и типы погод. Наиболее наглядным способом учета комплексности воздействия совокупности метеоэлементов и климатических характеристик на архитектурную среду является метод погодных комплексов. Для различных типов погоды (табл. 2.2) в архитектуре применяются соответствующие архитектурно-типологические характеристики. При этом отметим, что для зданий, в частности жилых, введено понятие эксплуатационный режим. Различаются четыре эксплуатационных режима (табл. 2.3): изолированный, закрытый, регулируемый, или полуоткрытый, и открытый. Иллюстрацией к табл. 2.3 является рис. 2.1.

Таблица 2.2

Классификации типов погоды

Тип погоды

Средне

месячная

температура воздуха, °С

Среднемесячная

относительная

влажность воздуха, %

Среднемесячная скорость ветра, м/с

Жаркая (сильный

40 и выше

24 и менее

перегрев при нор-

32 и выше

25-49

мальной и высокой

25 и выше

50 и более

влажности)

Сухая жаркая (сильный перегрев

32-40

24 и менее

при низкой влаж-

ности)

Тип погоды

Средне

месячная

температура воздуха, °С

Среднемесячная

относительная

влажность воздуха, %

Среднемесячная скорость ветра, м/с

Теплая (перегрев)

24-28

50-74

20-25

75 и более

24-32

24 и менее

28-32

25 и 49

Комфортная (теп-

12-24

24 и менее

ловой комфорт)

12-24

50-74

12-28

25-49

12-20

75 и более

Прохладная

4-12

0 и более

Холодная (охлаж-

—36...+4

2 и ниже

дение)

-28...+4

2-5

-20...+4

5-10

-12...+4

Более 10

Суровая(сильное

-36 и ниже

2 и менее

охлаждение)

-28 и ниже

2-5

-20 и ниже

5-10

-12 и ниже

Более 10

Таблица 2.3

Типы погоды и эксплуатационные режимы зданий

Режим

эксплуатации

и тип погоды

Архитектурно

планировочное

решение

Конструктивное

решение

Инженерно-

техническое

решение

Изолированный, жаркая с нормальной и повышенной

влажностью

Компактные решения, минимальные тепло-

поступления. Солнцезащита. Затенение пешеходных путей зданиями, максимальная

аэрация территории

Высокие воздухонепроницаемость

и теплозащитные качества. Солнце-защита. Остекление двойное или одинарное

с противомоскитными сетками

Полное кондиционирование, вентиляция побудительная,

вытяжная, вентиляторы-фены

Режим

эксплуатации

и тип погоды

Архитектурно

планировочное

решение

Конструктивное

решение

Инженерно-

техническое

решение

Закрытый,

жаркая,

сухая

Компактные решения, уменьшение тепло-поступлений. Солнцезащита. Затенение и обводнение территорий. Защита от пыльных ветров,

использование

ночных прохладных ветров

Ограждения

необходимых

теплозащитных

качеств и воздухопроницаемости. Солнце-защита стен и окон. Остекление двойное или одинарное

Искусственное охлаждение воздуха без снижения влагосо-

держания, механические вентиляторы-фены

Полу

открытый,

теплая

Сквозное, угловое проветривание, солнцезащита, открытые помещения, лоджии, веранды. Лестницы полуоткрытые, без тамбуров. Ориентация на юг и север. Затенение и аэрация территорий, использование

ночных прохладных ветров

Трансформация ограждений, трансформируемые солнцезащитные устройства

Механические вентиляторы -фены. При инсоляции требуется искусственное охлаждение внутренней среды (кондиционирование)

Открытый,

комфортная

Открытые помещения, лоджии, веранды.

Бытовые процессы на воздухе

Трансформация ограждений, трансформируемые солнцезащитные устройства

Не используются

Полу

открытый,

прохладная

Ориентация на солнце.

Защита территорий от ветра зелеными посадками, использование интермии

Одинарное остекление, трансформация ограждений

Отопление малой мощности, нерегулярное. Вентиляция естественная, вытяжная с притоком через клапаны, форточки

Режим

эксплуатации

и тип погоды

Архитектурно

планировочное

решение

Конструктивное

решение

Инженерно-

техническое

решение

Закрытый,

холодная

Компактные решения, уменьшение теплопо-

терь, теплые

лестницы, тамбуры, шкафы для верхней одежды в квартирах, ориентация на солнечные стороны. Защита территорий от ветра зданиями и посадками хвойных пород

Ограждения необходимых теплозащитных качеств

и воздухонепроницаемости. Двойное остекление

Центральное отопление средней мощности. Вентиляция естественная, вытяжная с притоком через окна, форточки, клапаны

Изолиро

ванный,

суровая

Максимальная

компактность,

минимальные

теплопотери,

теплые

лестницы, двойные тамбуры, вентилируемые шкафы для верхней одежды в квартирах, гардеробные комнаты в общественных зданиях. Защита территорий от ветра зданиями. Теплые переходы между зданиями,

крытые улицы

и центры, утепленные остановки общественного транспорта

Высокие воздухонепроницаемость

и теплозащитные

качества ограждений. Тройное и четверное остекление. Фундаменты с учетом вечной мерзлоты

Центральное отопление большой

мощности.

Механическая приточно-вытяжная вентиляция с подогревом и увлажнением воздуха

Режимы эксплуатации жилых зданий при различных типах погоды

Рис. 2.1. Режимы эксплуатации жилых зданий при различных типах погоды:

а — жаркой (изолированный режим); б — сухой жаркой или засушливой (закрытый режим); в — теплой (полуоткрытый режим); г — комфортной (открытый режим); д — прохладной (полуоткрытый режим); е — холодной (закрытый режим); ж —

суровой (изолированный режим)

Метод учета продолжительности погодных комплексов непосредственно раскрывает связи климата с задачами градостроительства и типологии зданий. Этот метод помогает архитекторам наметить пути к раскрытию связи погодных комплексов с категориями архитектурной композиции, например с архитектурным пространством, массой (пластика объемного решения), пластикой поверхности. Так, для погоды комфортной и теплой типичны открытый характер архитектурных пространств (свободная застройка микрорайонов, площадей; планировка внутренних помещений, обеспечивающая аэрацию и раскрытие во внешнюю среду), расчлененная масса здания (дворики, курдонеры, разделение зданий на блоки); расчлененная (нередко активно расчлененная) пластика поверхностей (лоджии, балконы, окна значительных размеров, затеняющие козырьки, навесы, перфорированные ограждения). Для холодной погоды с ветром рекомендуются пространства замкнутые, полузамкнутые и ориентированные; масса нерасчлененная, мало расчлененная, обтекаемая и ориентированная; пластика поверхности нерасчлененная. Наконец, метод погодных комплексов позволил отечественной архитектурной климатологии впервые выйти на уровень охвата мировой архитектурной практики, оперативно сравнивать многие города по их архитектурно-климатическим требованиям к открытой среде и зданиям. Эти возможности намного расширяют эффективность архитектурно-климатического анализа.

В то же время следует отметить, что этот метод ориентирован не на повышение комфортности микроклимата, а на климатозащиту. По сложившейся практике в качестве минимальной продолжительности типа погоды, определяющего режим эксплуатации жилища, принимается 1 месяц. Вместе с тем при проектировании необходимо учитывать и такие погодные условия (сочетания метеоэлементов), которые могут угрожать жизни и здоровью населения, хотя их повторяемость может и не превышать 1—2%. В этом состоит принципиальное и весьма перспективное направление дальнейшего развития архитектурной климатографии.

Жилая среда при комфортной погоде почти не несет климатозащитных функций. Тепловые условия комфортной погоды не ограничивают время пребывания человека во внешней среде, хотя в пределах указанных в табл. 2.2 крайних параметров могут быть желательны инсоляция или затенение. Комфортная погода характеризуется температурами 18—25°С, относительной влажностью воздуха 30—60%, скоростью движения воздуха 0,1—0,2 м/с в помещении, 1—3 м/с снаружи. Это лучший период московского лета. Режим эксплуатации помещений открытый, при котором помещения, как правило, непосредственно связаны с внешней средой (открытые окна). Не обязательны ограждающие конструкции зданий с высокими теплоизоляционными качествами, отопительное и охлаждающее оборудование; характерны лоджии, веранды, активный естественный воздухообмен помещений с наружной средой.

Жилая среда при прохладной погоде защищает человека от легкого охлаждения. В городской среде защита от ветра и использование инсоляции создают условия, близкие к комфортным. Прохладная погода характеризуется наружными температурами от 6 до 10°С (апрель-май, октябрь в Москве). В качестве нижней границы прохладной погоды принята температура 4°С, поскольку при наружных температурах 4,5—5°С и выше воздухообмен через форточки вполне допустим, режим полуоткрытый или регулируемый, а не закрытый (как при холодной погоде). Верхняя граница прохладной погоды обусловлена тем, что при наружной температуре 12°С и ниже желательны обогрев неинсолируемых помещений и экономия внутренних тепловых выделений здания. Относительная влажность наружного воздуха в указанном диапазоне температур большой роли не играет, так как влагосодержание наружного воздуха значительно ниже физиологического предела ощущения духоты. Для зданий характерны: обращение комнат на солнечные стороны горизонта; умеренно компактные объемно-планировочные решения; в квартирах — наличие места для хранения верхней одежды; воздухообмен через форточки, фрамуги, клапаны; трансформация (открывание и закрывание окон) и необходимая воздухонепроницаемость и теплозащитные качества ограждений; отопительные устройства малой мощности; накопление внутренних тепловыделений.

Жилая среда при холодной погоде защищает человека от сильного охлаждения. В городской среде желательна эффективная защита от ветра (ветрозащитная застройка) и использование солнца, что смягчает условия охлаждения, но не создает комфорта. Холодная погода с позиции обеспечения комфортности внутренней среды зданий, а также необходимости защиты человека в городской среде от ветра и использования солнечной радиации, характеризуется температурами до -25°С; скорость ветра составляет 3—10 м/с, но при низких температурах не должна превышать: 5 м/с при температурах до -28°С и 2 м/с при -36°С. Эти значения характерны для зимы на европейской территории России, в Западной и на юге Восточной Сибири. Нижняя граница холодной погоды принята из условий воздухообмена за счет притока наружного воздуха.

Жилая среда при суровой погоде должна полностью изолировать человека от внешнего воздействия. При наружной температуре -35°С и ниже относительная влажность внутреннего воздуха не превышает 5%, а с учетом внутренних влаговыделений — 25%, т.е. меньше гигиенического предела 30%. Ниже температуры, принятой в качестве границы, требуются искусственная вентиляция с увлажнением воздуха и защита человека вне здания от обморожения и чрезмерных теплопотерь. Для зданий характерны: режим эксплуатации — закрытый; компактные объемно-планировочные решения, обеспечивающие минимальные теплопотери; закрытая отапливаемая лестница; шкафы для верхней одежды; необходимая (для воздухообмена) воздухопроницаемость и высокие теплозащитные качества ограждений; окна закрыты, уплотнены; центральное отопление средней мощности, вытяжная канальная вентиляция (для зданий более 10 этажей требуются иные подходы к оценке воздухообмена помещений).

Жилая среда при теплой погоде должна предусматривать возможность перегрева помещений. Однако хорошее затенение и аэрация создают комфортные условия или близкие к ним в городской среде. Характерна температура воздуха от 20 до 32°С в зависимости от относительной влажности воздуха (наиболее жаркие дни в средней полосе России). Верхняя граница теплой погоды обусловлена разным влиянием влажности и степенью возможности использования движения воздуха для компенсации повышения температуры. При температуре воздуха 32—33°С и выше бороться с перегревом путем проветривания очень трудно. Поэтому предел 32°С принят как верхняя граница теплой погоды при низкой и нормальной влажности воздуха. При повышенной влажности большую роль играет предел влагосодержания, который и предопределяет верхнюю границу погоды по температуре воздуха 28°С при влажности до 75% и 25°С при более высокой влажности. Это относится к случаям, когда радиационная температура и температура воздуха одинаковы, а скорость ветра находится в пределах 0,5—1,0 м/с.

При теплой погоде для зданий рекомендуется: двусторонняя планировка квартир (офисов, других помещений) для обеспечения активного сквозного или углового проветривания внутренних пространств; открытые помещения — лоджии, веранды, террасы, придомовые дворики; трансформация пространств и ограждающих конструкций в суточном ходе, открытые окна, обязательное наличие солнцезащитных устройств на окнах, в помещениях — механические вентиляторы-фены. Однако наиболее дорогостоящие приемы, к которым относятся планировка со сквозным или угловым проветриванием, — солнцезащитные устройства на окнах (наиболее эффективные — наружные) и др. используются далеко не всегда.

Жилая среда при жаркой сухой (.засушливой) погоде защищает человека от сильного перегрева, избыточной инсоляции, а нередко и от пылеветрового воздействия. Режим эксплуатации зданий — закрытый. Характерны компактные объемно-планировочные решения, обеспечивающие минимальные теплопоступления извне, увеличение кубатуры внутренних пространств, открытые помещения для вечернего и ночного отдыха, защищенные от солнца светопроемы, искусственное (испарительное) охлаждение, принудительная местная вентиляция, использование охлаждающего действия грунтовых полов и оснований зданий. В городской среде активное притенение и обводнение смягчают микроклимат, но не всегда способны создать полностью комфортные условия. Необходимы защита от перегретых пыльных ветров пустынь, улавливание ночных прохладных потоков воздуха с гор и возвышенностей, устройство фонтанов. Типичны температуры 33—36°С и влажность менее 24% (дневные часы лета в Средней Азии).

Жилая среда при жаркой погоде также защищает человека от сильного перегрева, избыточной инсоляции и духоты. Ощущение духоты вызывается сочетанием высокой температуры и высокой влажности воздуха. Режим эксплуатации зданий — изолированный, требующий для создания условий теплового комфорта полного кондиционирования воздуха в режиме удаления избыточной влаги. Недопустимы испарительное (повышает влагосодержание) и радиационное (образуется конденсат) охлаждение. Характерны компактные объемно-планировочные решения, открытые помещения для вечернего и ночного отдыха, использование охлаждающего действия грунтовых полов и оснований зданий. Окна при работе кондиционеров должны плотно закрываться, иметь солнцезащитные устройства. Для городской среды и традиционного жилища характерны притенение и активная аэрация, поскольку только движение воздуха способно облегчить ощущение духоты и перегрева, но не в состоянии обеспечить полный физиологический комфорт. Типичные температуры воздуха составляют 30—35°С при влажности 60—25% (наиболее жаркие дни на Черноморском побережье Кавказа, характерные условия для тропического морского и экваториального типов климата).

Как можно заметить, в предложенной классификации жаркая погода с высокой и нормальной влажностью представляет собой один тип, хотя во многом они различаются и имеют разное географическое распределение. Объединение основано на общности типологических требований для получения комфортных условий архитектурной среды (охлаждение с понижением влажности, аэрация, солнпезащита и т.д.).

Архитектурно-климатический анализ в части оценки фоновых условий по типам погоды требует подсчета количества дней (месяцев или полусуток) с той или иной погодой. По сложившейся в 1960— 1980-х гг. практике проектирования и строительства в СССР, когда преобладала тенденция типизации проектов и стремление к экономичности решений, климатические районы, определявшие право на введение новых проектов, охватывали территории, в пределах которых повторяемость погоды менялась на 15—20% от одного района к другому. В то время был сделан вывод, что минимальной повторяемостью погоды, которую на том этапе следовало учитывать в типовом проектировании, является 8% от длительности года. Величина 8% свидетельствует о том, что здания и градостроительные образования проектировались и в значительной мере проектируются сейчас со значительным допуском условий, далеких от комфорта.

Если бы при проектировании зданий учитывались вероятные условия эксплуатации по примеру гидротехнических сооружений (например, по 1%-ному паводку), то затраты на их строительство значительно возросли бы. Между тем, чтобы обеспечить полную безопасность, может когда-нибудь дело дойдет и до учета погодных событий, имеющих повторяемость на уровне 1—2%. В настоящее время целесообразным представляется учитывать метеорологические условия, имеющие обеспеченность не менее 5%, а в отдельных случаях, при проектировании городских территорий, — и более редкие явления, особенно связанные с опасностью для жизни населения (скажем, сильные порывистые ветры).

Так, например, картина погодных условий в Москве выглядит следующим образом. В течение года прохладная погода длится 230 дней (63%), холодная — 73 дня (20%), комфортная — 55 дней (15%). Эти типы погоды определяют архитектурные решения. Семь дней (2%) наблюдается теплая (перегревная) погода, которая «не делает погоды», так как ее малая продолжительность не дает зданиям перегреться.

Якутск: прохладная погода длится 113 дней, или 31% (вдвое меньше, чем в Москве), холодная — 121 день, или 33% (более чем в 1,5 раза больше, чем в Москве), а суровая, которой вообще нет в Москве, — 84 дня, или 23%. Лето же очень похоже на московское: комфортная погода — 40 дней — 11% (в Москве — 15%), теплая (перегревная) — те же 2%.

Адлер-Сочи: прохладная погода длится 234 дня — 64%, столько же, сколько в Москве; комфортная — 58 дней, или 16%, как в Москве, но вместо холодной 69 дней, или 19%, длится теплая (перегревная) погода и еще 4 дня, или 1%, — жаркая влажная погода.

Анализируя представленный выше материал о продолжительности погодных комплексов в Москве, Якутске и Адлере-Сочи нужно обратить внимание на следующее. Основные типообразующие классы погоды в Москве и Якутске имеют значительную повторяемость, они и определяют главные требования к архитектурным решениям. Тем не менее и в Москве, и в Якутске 7 дней в году (2%) наблюдается теплая погода, которая, как было отмечено, при проектировании зданий не учитывается. Однако именно она создает наиболее опасные для здоровья горожан перегревные ситуации. За счет этого и создается типичная для архитектурной климатографии ситуация компромисса: «полный комфорт — плати, не можешь — терпи!», т.е. оценка роли повторяемости или продолжительности той или иной погоды зависит от уровня требований к комфорту, от материальных возможностей и социальных задач на определенных этапах развития общества.

Для обеспечения полного комфорта летом в упомянутых городах надо выполнить требования, предъявляемые к жилой среде теплой погодой. Например, как показал опыт последних 15—20 лет, в Центральном регионе России, в том числе в Москве, летом могут наблюдаться «волны жары», имеющие настолько большую интенсивность и продолжительность, что отсутствие приспособленности жилой среды к ним наносит большой вред городу и его жителям. Памятна «волна жары» 2010 г., длившаяся почти месяц, — явление, повторяемость которого составляет 2% (примерно раз в 50 лет). Поскольку жилая среда не была приспособлена к такой погоде, это явление имело очень тяжелые последствия для москвичей и жителей других городов региона. Достаточно сказать, что в течение месяца, пока длилась эта жара, уровень смертности в Москве повысился более чем в два раза.

Кстати, и суровая погода, которая в Москве держится в январе и феврале по несколько дней и в условиях которой для пешеходов необходимы теплые переходы между зданиями, а во внутренней среде — принудительная приточно-вытяжная вентиляция с подогревом и увлажнением воздуха, — тоже пока не учитывается в практике проектной подготовки строительства. Однако для того чтобы получить обморожение при сочетании температуры и скорости ветра, характерных для суровой погоды, необходимо несколько минут, максимум — полчаса. Такая опасность возникает для жителей Центральной России каждую зиму, причем неоднократно.

Также можно отметить, что и в районе Адлер-Сочи жаркая влажная погода, длящаяся только 4 дня (1%), не имеет отражения в архитектурных решениях, поскольку при этой погоде требуются полное кондиционирование воздуха (охлаждение и уменьшение влагосодержания), принудительная вытяжная вентиляция. Комплекс средств, применяемый в г. Сочи, фактически пока отвечает только теплой (перегревной) погоде, длительность которой составляет 69 дней, или 19%, в году.

Еще одним важным аспектом создания комфортной и безопасной с точки зрения климатического воздействия архитектурной среды является комплексная оценка климатических условий территории застройки с позиции выработки климатозащитных мероприятий соответствующими архитектурно-планировочными средствами. Для такой оценки можно использовать специально разработанные номограммы, учитывающие одновременное воздействие целого ряда климатических фактов и показывающие требуемое направление воздействия на климатические параметры застройки. Основные доступные для этого архитектурно-планировочные и инженерно-технические средства регулирования микроклимата представлены в приложении 2.

Для такого вида архитектурно-климатического анализа способом оценки комфортности климатических условий является по-факторная оценка, но ориентированная не на архитектурную среду, а на человека, субъектом которого он является. При таком анализе необходимы данные о возрасте, здоровье и виде деятельности людей в конкретной ситуации, как это делается при гигиенической оценке микроклимата. В первом приближении в качестве субъекта можно принять взрослого здорового человека-пешехода, поскольку при неблагоприятных условиях все остальные группы населения могут находиться под защитой внутренней среды зданий, а отдельные, не отвечающие погодным условиям виды деятельности на территории застройки могут быть сознательно ограничены.

В общем случае при пофакторном анализе климата в архитектурных целях необходимы знания положений архитектурной климатологии, знание функционального назначения и технико-экономических показателей объекта, ради которого проводится анализ, и критериев, определяющих то или иное решение. Так, например, необходимость солнцезащиты участков и зданий, связанных с длительным пребыванием населения, обусловливается продолжительностью периода с температурой воздуха 2 ГС и выше. Известно также, что в Москве благоприятные условия на балконах и лоджиях складываются: если имеется инсоляция — при температурах 12— 16°С; если используется солнцезащита — при 16—26°С. Как видно из этого примера, анализ условий комфортности требует учета совокупности критериев оценки и средств регулирования среды, реализованных, как правило, в виде отдельных методических разработок. В обобщенном виде климатозащитные мероприятия при выборе архитектурно-планировочного решения могут определяться по номограммам, представленным на рис. 2.2.

-30

сильное ветроохлаждение зданий

прогулки недопустимы Г

ф

-I

защита пешехода от ветра

обязательна

_I_

разрушения

механические

снего- и пескоперенос

дискомфорт

желательна

_I_

3 ф

о.

X

Е см « ф

И

  • 5 |
  • 1|

о. 3

с ?

X " X ш

® І.

  • ? я
  • -25
  • -20
  • -15 -10 -5 0 5

температура воздуха, ! С

я)

ю

  • 20
  • 30

скорость ветра, м/с

пешеходов осени ё^весён" няя ветрозащита для райо-ов с пониженной

ветрозащита

зимняя

ветрозащита

территории

защита от

стимулирование

аэрации

летняя ветрозащита территории

ветрозащита , . в период

/ /о' суховеев

зимняя ветрозащита при высокой влажности

’ максимальное использование инсоляции

максимальное использование

  • -1_I_I_I_
  • -20 -15 -10 -5

У перегрева при повыш. влажности

г'///

  • 1 / о°>
  • ? ^

“I

защита от перегрева

естественной подвижности воздуха _I_I_I_I_1_

о

10 15 20 25 30

влажность воздуха, %

б)

температура воздуха, СС Учет микроклимата:

обязателен рекомендуется

в)

Рис. 2.2. Примеры графических методов климатического анализа архитектурной среды:

график воздействия ветра и температуры воздуха на жилую среду; б — биоклиматический график зоны комфорта; в — диаграмма

выбора основных градостроительных мероприятий по регулированию микроклимата

 
<<   СОДЕРЖАНИЕ   >>